Centre Number						Candidate Number		
Surname								
Other Names								
Candidate Signature								

General Certificate of Education Advanced Subsidiary Examination June 2012

Design and Technology:
 SYST1 Systems and Control Technology

Unit 1 Materials, Components and Application

Tuesday 22 May $2012 \quad 1.30$ pm to 3.30 pm

For this paper you must have:

- normal writing and drawing instruments.

Time allowed

- 2 hours

Instructions

- Use black ink or black ball-point pen. Use pencil for drawing only.
- Fill in the boxes at the top of this page.
- Answer all questions in Section A.
- Answer one question from Section B, either Question 5 or Question 6.
- Answer the question in Section C.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80 .
- There are 20 marks for Section A, 20 marks for Section B and 40 marks for Section C.

Advice

- Illustrate your answers with sketches and/or diagrams wherever you feel it is appropriate.
- You are advised to spend approximately 30 minutes on Section A, 30 minutes on Section B and one hour on Section C.

Section A

Answer all the questions in this section.

1 (a) Name a man-made board that uses lamination for strength.

1 (b) (i) Name an alloy.
\qquad

1 (b) (ii) List the two main materials that make up the alloy you have named above.
\qquad
\qquad

With the aid of a diagram show how three $1 \mathrm{~K} \Omega$ resistors can be connected to form a network with a total resistance of $1 \mathrm{~K} 5 \Omega$.

3 With the aid of an annotated sketch, describe a method of temporarily joining two pieces of metal together so they can be disassembled for maintenance purposes.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

4 (a) Complete the logic network so that it will function as shown in the truth table below.
A^{-}

$-\mathbf{Q} \quad$| A | B | C | Q |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 |

C^{-}

4 (b) With the aid of a diagram, show how a DPDT switch can be used to reverse the direction of rotation of a motor.

Section B

Answer either Question 5 or Question 6.

5 (a) With the aid of diagrams, describe two different systems for continuously flashing a normal LED.
The LED should switch on for approximately 2 seconds then off for approximately 3 seconds.

Your solutions should include any relevant calculations.

5 (a) (i) System 1

5 (a) (ii) System 2

5 (b) Choose one of your solutions from part 5(a). Explain how it would be possible to modify the system for switching on a 240 volt ac lamp.
\qquad
\qquad
\qquad

Do not answer Question 6 if you have answered Question 5.

6 (a) Using annotated sketches, describe a suitable test that could be carried out to compare the resistance to bending forces of a range of plastics.

Your answer should indicate:

- the approximate size of the sample
- the method of applying the load
- the data that needs to be collected
- the method of collecting the data
- how the data is analysed.

6 (b) Using annotated sketches, describe in detail a suitable manufacturing process for the main body of a plastic bucket.

Section C

Answer this question.

7 (a) A system is required to automatically monitor and control the temperature in a room.
With the aid of diagrams, show two systems that would produce an electrical output of at least 2 volts at 10 mA when the temperature exceeds $25^{\circ} \mathrm{C}$.

7 (a) (i) System 1

7 (a) (ii) System 2

7 (b) With the aid of annotated sketches, show two systems for producing 200 mm of linear movement when triggered by an electrical pulse.

You should clearly show how the amount of linear movement is limited to 200 mm .
7 (b) (i) System 1

7 (b) (ii) System 2

7 (c) Using your ideas from parts 7(a) and 7(b), produce a design for a complete system that will automatically open a window by 200 mm when the temperature rises above $25^{\circ} \mathrm{C}$ and close the window when the temperature falls below $25^{\circ} \mathrm{C}$.

Your diagram should clearly show a window and window frame.
Marks will be awarded for:

- the window and window frame (3 marks)
- how the system is positioned and attached (3 marks)
- the sensing and control system (8 marks)
- assembly of the sub-systems (2 marks)
- selection of materials and components.

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED

There are no questions printed on this page

DO NOT WRITE $\varnothing N$ THIS PAGE ANSWER IN THE SPACES PROVIDED

There are no questions printed on this page

DO NOT WRITE ON/THIS PAGE
ANSWER IN THE SPACES PROVIDED

