Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

General Certificate of Education Advanced Subsidiary Examination June 2011

Design and Technology: SYST1 Systems and Control Technology

Unit 1 Materials, Components and Application

Wednesday 18 May 2011 1.30 pm to 3.30 pm

For this paper you must have:

· normal writing and drawing instruments.

Time allowed

2 hours

Instructions

- Use black ink or black ball-point pen. Use pencil for drawing only.
- Fill in the boxes at the top of this page.
- Answer all questions in Section A.
- Answer **one** guestion from Section B, either Question 5 or Question 6.
- Answer the question in Section C.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.
- There are 20 marks for Section A, 20 marks for Section B and 40 marks for Section C.

Advice

- Illustrate your answers with sketches and/or diagrams wherever you feel it is appropriate.
- You are advised to spend approximately 30 minutes on Section A, 30 minutes on Section B and one hour on Section C.

For Examiner's Use				
Examiner's Initials				
Question	Mark			
1				
2				
3				
4				
5				
6				
7				
TOTAL				

Section A

	Answer all the questions in this section.
1 1 (a)	Explain the following terms and give an example for each. An Input transducer
1 (b)	(2 marks) An Output transducer
1 (5)	All Output transducer
	(2 marks)
2	Explain the following terms.
2 (a)	Feedback within a closed loop system
	(2 marks)
	(2 mark

2 (b)	Oscillatory motion	
	(2 marks)	
		4
3	With the aid of an annotated sketch, describe a method of using heat to permanently join two pieces of metal together.	
3	With the aid of an annotated sketch, describe a method of using heat to permanently join two pieces of metal together.	
3	With the aid of an annotated sketch, describe a method of using heat to permanently join two pieces of metal together.	
3	With the aid of an annotated sketch, describe a method of using heat to permanently join two pieces of metal together.	
3	With the aid of an annotated sketch, describe a method of using heat to permanently join two pieces of metal together.	
3	With the aid of an annotated sketch, describe a method of using heat to permanently join two pieces of metal together.	
3	With the aid of an annotated sketch, describe a method of using heat to permanently join two pieces of metal together.	
3	With the aid of an annotated sketch, describe a method of using heat to permanently join two pieces of metal together.	
3	With the aid of an annotated sketch, describe a method of using heat to permanently join two pieces of metal together.	
3	With the aid of an annotated sketch, describe a method of using heat to permanently join two pieces of metal together.	

A	
В)>>- Q
С	

Α	В	С	Q
0	0	0	
0	0	1	
	<u> </u>		

(5 marks)

4 (b)	With the aid of a diagram show how a SPDT switch can be used to provide both a
	positive and negative signal to the input of a logic gate.

(2 marks)
Why is it necessary to ground any unused inputs to a logic gate?
(1 mark)

4 (c)

8

Section B

Answer either Question 5 or Question 6.

5 (a) Using a diagram, describe **two** different systems for producing a time delay suitable for switching on a 240 volt ac lamp for 10 minutes when a switch is momentarily pushed.

5 (a) (i) System 1

(8 marks)

5 (a) (ii) System 2

(8 marks)

5 (b) Choose one of your systems given in **part (a)**. Explain how it would be possible to make the system *adjustable* so the time period could be any value between 2 and 30 minutes.

(4 marks)

20

Do not answer Question 6 if you have ans	swered Question 5
---	-------------------

6 (a) With the aid of annotated sketches describe **two** different methods of transferring and amplifying rotary motion between two parallel shafts.

6 (a) (i) Method 1

(7 marks)

6 (a) (ii) Method 2

(7 marks)

6 (b) With the aid of an annotated sketch, describe in detail how to convert reciprocating motion to clockwise rotary motion.

(6 marks)

20

Section C

Answer this question.

- **7** A system is required to automatically monitor the water level and speed of flow of a river.
- **7 (a)** With the aid of a diagram, show a sensing system that would produce an electrical output proportional to the water level in the river.

(4 marks)

- **7 (b)** With the aid of annotated sketches, show **two** methods of converting the movement of the water in the river into rotary motion.
- 7 (b) (i) Method 1

(3 marks)

7 (b) (ii) Method 2

(3 marks)

7 (c)	With the aid of an annotated sketch, show a system that would be capable of producing an electrical pulse for each rotation of a shaft.
	(4 morks)
7 (d)	(4 marks) With the aid of a diagram, show how the number of electrical pulses per minute can be
, (a)	counted and displayed.
	(10 marks)
	_

7 (e) Using this page and the next page incorporate your ideas from parts (a), (b), (c) and (d) into a design for a complete system that automatically indicates the level of the river and displays an output to indicate the speed of flow of the water.

Marks will be awarded for:

•	materials and construction	(4 marks)
•	how and where the system is placed in the river	(2 marks)
•	assembly of the sub-systems	(8 marks)
•	the indication and display system.	(2 marks)

40

END OF QUESTIONS

