General Certificate of Education June 2007 Advanced Subsidiary Examination

DESIGN AND TECHNOLOGY: SYSTEMS AND CONTROL TECHNOLOGY Unit 1 Materials and Components

SCT1

Friday 8 June 2007 9.00 am to 10.30 am

For this paper you must have:

- a lined answer book (AB08) which is provided separately
- normal writing and drawing instruments
- an insert (enclosed).

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Use pencil and coloured pencils only for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is SCT1.
- Answer three questions.
- Answer Question 1 and two other questions.
- Securely attach the insert to the answer book at the end of the examination.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 100.
- Four of these marks will be awarded for using good English, organising information clearly and using specialist vocabulary where appropriate.
- There are 40 marks for Question 1 and 28 for each of Questions 2 to 4.

Advice

• Illustrate your answers with sketches and/or diagrams wherever you feel it is appropriate.

Answer Question 1.

1 Figure 1 shows a circuit diagram for an alarm.

- (a) Describe in detail the operation of the circuit shown in **Figure 1** once the push switch has been closed. (8 marks)
- (b) The output frequency (f) of IC2 is given by the formula:

$$f = \frac{1.44}{(R_3 + 2R_4)C_2}$$

Calculate the output frequency of IC2.

(c) The 'ON' time (t) of IC1 is given by the formula:

$$t = 1.1R_2C_1$$

Calculate the 'ON' time of IC1.

(d) Using the **insert sheet** provided, complete the Printed Circuit Board (PCB) diagram for the circuit in **Figure 1**.

Indicate the component	locations, and	d identify pin 1	1 on IC1 and IC2.	(12 marks)
1	,	21		

(e) (i) The circuit shown in **Figure 1** could be housed in a casing made from a thermoplastic.

Name a suitable thermoplastic for the casing of the circuit. (1 mark)

- (ii) With the aid of annotated sketches, describe in detail a suitable manufacturing process for a casing using the plastic you identified in part (e)(i). (7 marks)
- (f) Quality Control and Quality Assurance are two procedures used in manufacturing industries.
 Describe two differences between Quality Control and Quality Assurance. (4 marks)

(5 marks)

(3 marks)

Answer any **two** of Questions 2 to 4.

- 2 Most automatic washing machines use a logic-based control system. The washing machine senses whether:
 - the door of the washing machine is closed,
 - the drum is filled with water to the correct level,
 - the water is at the required temperature.
 - (a) Name **three** input components that could monitor the above conditions. A different component should be named for each condition. (3 marks)
 - (b) Using the input components you identified in part (a):
 - (i) draw a circuit diagram that will give an output that goes HIGH when the door of the washing machine is closed, (3 marks)
 - (ii) draw a circuit diagram that will give an output that goes HIGH when the drum is filled with water to the correct level, (3 marks)
 - (iii) draw a circuit diagram that will give an output that goes HIGH when the water is at the required temperature. (3 marks)
 - (c) Using annotated sketches, show how the three input components you identified in part (a) could be mounted within the washing machine to enable the three conditions to be monitored. $(3 \times 2 \text{ marks})$
 - (d) Draw a logic diagram that will give a HIGH output only when the following conditions are met.
 - The door is closed.
 - The drum is filled with water to the correct level.
 - The water is **below** the required temperature. (6 marks)
 - (e) Draw a truth table for the logic diagram you drew in part (d). (4 marks)

Turn over for the next question

3 A student has developed a machine that will test the reliability of a push-button switch.

The machine is designed to operate the switch button repeatedly using a *crank and slider* mechanism.

- (a) Using annotated sketches, describe in detail the operation of an appropriate *crank and slider*. (6 marks)
- (b) The machine is operated by a motor running at a constant speed.

Using annotated sketches, describe a mechanical system that allows the crank to run at **three** different speeds. *(6 marks)*

(c) The switch button could also be operated repeatedly using a *cam and follower*.

Compare and contrast the use of a *cam and follower* and a *crank and slider* in this application. (6 marks)

(d) The machine should stop automatically after 100 operations of the switch button.

Using annotated sketches, describe in detail **one** method of achieving this requirement. *(10 marks)*

- 4 A coat hanger could be manufactured from wood, plastic or metal.
 - (a) (i) Discuss the advantages **and** disadvantages of using *wood* to manufacture the coat hanger, making reference to the:

	• method of production,	(3 marks)
	• scale of production,	(2 marks)
	• degree of durability.	(2 marks)
(ii)	Name a suitable wood from which the coat hanger could be manufactured	1. (1 mark)
(i)	Discuss the advantages and disadvantages of using <i>plastic</i> to manufacture hanger, making reference to the:	e the coat
	• method of production,	(3 marks)
	• scale of production,	(2 marks)
	• degree of durability.	(2 marks)
(ii)	Name a suitable plastic from which the coat hanger could be manufacture	ed. (1 mark)
(i)	Discuss the advantages and disadvantages of using <i>metal</i> to manufacture hanger, making reference to the:	the coat
	• method of production,	(3 marks)

- scale of production, (2 marks)
- degree of durability. (2 marks)
- (ii) Name a suitable ferrous metal from which the coat hanger could be manufactured. (1 mark)
- (d) Describe how **one** of the coat hangers above can be recycled. (4 marks)

END OF QUESTIONS

(b)

(c)

There are no questions printed on this page

There are no questions printed on this page

There are no questions printed on this page

Copyright $\ensuremath{\mathbb{C}}$ 2007 AQA and its licensors. All rights reserved.

Surname	ne			Other Names				
Centre Number				Candid	ate Number			
Candidate Signatu	ıre							

General Certificate of Education June 2007

Design and Technology: Systems And Control Technology Unit 1 Materials and Components SCT1

For Examiner's Use

QUALIFICATIONS

ALLIANCE

Insert

For use with answering Question 1 part (d).

