General Certificate of Education Summer 2003 Advanced Examination

DESIGN AND TECHNOLOGY: SYSTEMS AND CONTROL TECHNOLOGY Unit 6 Written Paper (SCT6)

SCT6

Friday 27 June 2003 Morning Session

In addition to this paper you will require:

- an unlined answer book (7024);
- normal writing and drawing instruments

Time allowed: 3 hours

Instructions

- Use blue or black ink or ball-point pen. Pencil and coloured pencils should be used only for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. *The Paper Reference* is SCT6.
- Answer **four** questions.
- Answer **one** question from each of Sections A, B and C and **one** other question from any section.

Information

- The maximum mark for this paper is 100.
- 24 marks are allocated to each question and 4 marks overall for Quality of Written Communication.
- Mark allocations are shown in brackets.
- This paper carries 20 per cent of the total marks for Advanced Level awards.
- You are reminded of the need for good English and clear presentation. The Quality of your Written Communication will be assessed across all questions.

Advice

• Your answers should be illustrated with sketches and/or diagrams wherever you feel it is appropriate.

Copyright © 2003 AQA and its licensors. All rights reserved.

Answer **four** questions.

Answer one question from each of Sections A, B and C and one other question from any section.

Each question carries 24 marks.

SECTION A: MATERIALS AND COMPONENTS

1	(a)	Describe the advantages and disadvantages of using the following systems for converting rotary motion to linear motion:								
		(i)	a rack and pinion	l						
		(ii)	a screwthread							
		(iii)	a cam and follow	ver.					(3 x 6 n	narks
	(b)		each of the systems choice.	mentioned in (Question 1	(a) describ	e an appli	cation, giv	ring a reaso	
2		-	central heating boing activated unless			-	system wh	nich preve	nts the mai	in gas
	•	The p	ilot light is lit (logi	c state 1).						
	•	The w	vater in the system	is below the rec	quired tem	perature (l	ogic state	0).		
	•	The c	irculation pump is	operating (logic	e state 1).					
	(a)		v a logic diagram to n the criteria are mo		safety syst	tem could	provide an	output (lo) only
	(b)	(i)	With the aid of a libe monitored. The below the required	he system shou		_			r temperat	

(ii) Draw a suitable circuit diagram to provide the temperature monitoring for the safety control system. You should indicate on your diagram the system for altering the required

(10 marks)

water temperature.

SECTION B: DESIGN AND MARKET INFLUENCES

3	(a)	Discuss the advantages and disadvantages which using standardised systems, modules, parts and components brings to the:						
		Design engineer.						
		Method of production.						
		Quality Assurance department.						
		Service engineer.						
		• Consumer. (24 marks)						
4	(a)	With the aid of a detailed systems diagram, explain the operation of a door that will slide open automatically when a person approaches, then closes after they have passed through. All subsystems should be clearly identified. (12 marks)						
	(b)	Select three sub-systems from Question 4(a) and describe in detail the function of each. Suggest suitable component(s) for use in each sub-system. (3 x 4 marks)						

TURN OVER FOR THE NEXT QUESTION

SECTION C: PROCESS AND MANUFACTURE

- 5 (a) Explain in detail with the aid of sketches the operation of **three** products/systems that require high levels of frictional force for their successful operation.

 (3 x 6 marks)
 - (b) Describe in detail **two** methods that can be used to reduce friction between moving mechanical parts. For each method give the relative advantages.

 (2 x 3 marks)
- 6 (a) With the aid of sketches explain in detail the operating principles of **two** dissimilar methods for *harnessing* and *storing* energy from renewable sources.

 (2 x 9 marks)
 - (b) Discuss the limitations and advantages of each method you have described in Question 6(a). (6 marks)

END OF QUESTIONS