GCE

Computing

Advanced Subsidiary GCE

Unit F452: Programming Techniques and Logical Methods

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Question			Expected Answer	Mark	Rationale/Additional Guidance
Unless otherwise stated, award 1 mark per bullet point up to the maximum stated.					
1	(a)		- Avenue	[1]	
-	(b)	(i)	- 6	[1]	Award Benefit of doubt "BusStop(6)"
		(ii)	- \quad Check the array is not empty (and report an error if it is) - Set a counter to $1 / 0 /$ start from first position - \quad Check if item (at current position) is item searched - If found return the position/value of counter - If not found increment counter/move to next position - Until the end of the array / until item found - If item still not found, return "Not Found"	[5]	"searches through all the values IN ORDER" is equivalent to the $5^{\text {th }}$ bullet point. Just "searches through all the values" should be given the benefit of doubt.
	(c)	(i)	- String - Consists of a series of characters (some of which happen to be digits) / not a numeric value	[2]	In all parts of (c) the second mark is not dependent on the first. If two answers are given for the data type they must BOTH be correct to award the mark. Accept Text, Alphanumeric, array or pointer to Character
		(ii)	- Real - To allow for pounds and pence	[2]	Accept known real types eg double, single, float. Also accept Currency
		(iii)	- String - Consists of a series of characters/ a word	[2]	Accept Text, Alphanumeric, Character
		(iv)	- Integer - The position in an array must be a whole number	[2]	Accept known integer data types eg int, byte, long but not Number

Question		Expected Answer	Mark	Rationale/Additional Guidance
(d)	(i)	- Distance $=4-1$ /Distance $=3$ - Fare $=3 * 0.20$ - All IF statements are False and not executed - $\quad 0.60$ is returned	[3]	Accept follow through for arithmetic errors made in previous steps
	(ii)	- Distance $=6-5 /$ Distance $=1$ - Fare $=1$ * 0.20 - As Type = "CHILD" is TRUE - \quad.. Fare $=0.20 / 2$ - $\quad 0.10$ is returned	[4]	Accept follow through for arithmetic errors made in previous steps
	(iii)	- Distance $=5-2 /$ Distance $=3$ - Fare $=3 * 0.20=0.60$ - As Type = "PENSIONER" AND Fare > PensionerMax are both TRUE ... Fare $=$ PensionerMax $/ 0.50$	[4]	Accept follow through for arithmetic errors made in previous steps For $3^{\text {rd }}$ bullet point, candidate must clearly indicate that both conditions /the overall condition is TRUE
(e)	(i)	- If the value of PensionerMax changes, this only needs to be updated once (on line 2)... (and the new value will be used throughout the code) - The statements (on lines 8 and 9) are clearer because we know what the value represents - Cannot be accidentally changed/will be consistent throughout the program.	[2]	

Question		Expected Answer	Mark	Rationale/Additional Guidance
	(ii)	- 0.20 (on line 4) - Suitable identifier eg CostPerStop OR - 2 (on line 6) - Suitable identifier eg DivisorForChildFare	[2]	Accept solutions where the candidate has changed line 6 to a valid multiplication
(f)	(i)	- Concatenation/recognisable concatenation operator used... - ... on "ROUTE " and RouteNumber	[2]	
	(ii)	Method 1: - Append spaces - ... at least 6 spaces needed (or 7 if string may be empty) - Extract first seven characters. Method 2: - find the length of the name of the stop - If length $>=7$, extract the first 7 characters (eg Left) - If length is <7 append spaces to bring length up to 7 Accept alternative methods which work.	[3]	
	(iii)	- Determine length of Ticket Type - Format Fare to Currency/to 2 d.p. with $£$ sign - Determine length of formatted fare - Calculate number of spaces needed (15 - length of other strings) - Concatenate TicketType, spaces and (formatted) fare	[5]	

Question	Expected Answer	Mark	RationalelAdditional Guidance
(c)	High level response [6-8 marks] Candidates answer the question with a complete and comprehensive discussion including many of the points below. Their answers show a thorough understanding of the importance of good user interface design, and a clear connection between good design and its implications using a variety of examples from the student recruitment agency and/or elsewhere. The information will be presented in a structured and coherent form. There will be few if any errors in spelling, grammar and punctuation. Technical terms will be used appropriately and correctly. Medium level response [3-5 marks] Candidates discuss some of the points below. They demonstrate an awareness of the need for good user interface design and provide some examples of what would constitute good design - but the two are not always linked effectively. Some relevant examples are given, but these are mainly from the question and lack in variety. The information will be presented in a structured format. There may be occasional errors in spelling, grammar and punctuation. Technical terms will be mainly correct.		
Low level response [0-2 mark] Candidates will demonstrate a limited understanding of the question. A few points from the list below will be made. Elements of what constitutes good design may be stated, but their implications are not argued. Use of examples to illustrate the points made will be minimal and/or not effective in enhancing the argument. Information will be poorly expressed and there will be a limited, if any, use of technical terms. Errors of grammar, punctuation and spelling may be intrusive.			

Question		Expected Answer	Mark	Rationale/Additional Guidance
(c)	(i)	- Indentation of ... blocks of code which are included within a control structure ... allows you to see clearly where the structure starts and ends Suitable example from code	[2]	Underlined phrase does not have to be exact, any correct name for the technique is worth a mark Accept other techniques as long as they are used in the code
	(ii)	EITHER - Use of meaningful identifiers - ... instead of A, B, C - ... which tell us what the values represent OR - Use of comments - ... which explain the steps of the algorithm to the reader - ... but are not to be executed	[2]	Underlined phrase does not have to be exact, any correct name for the technique is worth a mark Accept other techniques as long as they are not used in the code
(d)		- In line 4 = is a comparison/relational/equality operator... ... which checks if A is the same as B (and returns TRUE or FALSE) In line $10=$ is an assignment operator ... which sets the value of A to become the value of B	[4]	give benefit of doubt for "line 4 is a condition"
(e)		- Initialise the value of C - ... before it is used (in line 09) - ... otherwise previous values of C will lead to wrong results	[2]	"Assigns a value" on it's own is too vague, but if a reason for the assignment given, then give it a BOD.

Question		Expected Answer	Mark	Rationale/Additional Guidance
(f)		- In white box testing, the actual steps of the algorithm are tested... ... to make sure all parts work as intended ... you need to test all possible paths through the algorithm In black box testing, sets of inputs are tested... ... to see if they produce the intended outputs ... you need to test all possible types of input/situations ... but how the algorithm works is not considered (Max of 3 if candidate mentions or describes only white box or black box testing)	[4]	
(g)	(i)	PATH - 01, 02, 03, 04(TRUE) - 05 - (06) , 12 VALUES - $A=10, B=1, C=0$	[4]	To mark incorrect answers remember that: the $2^{\text {nd }}$ bullet is for knowing that if $\mathrm{A}=\mathrm{B}$ then control moves to the next line; the $3^{\text {rd }}$ bullet is for knowing that the ELSE section is not exectuted. There is no follow through. If candidate says line 4 is false, they are likely to get no marks Give benefit of doubt if value of condition not shown but path correct
	(ii)	PATH - 01, 02, 03, 04(FALSE) - 06,07(TRUE) - 08, 09, 10, - 07(FALSE), 11, 12/ 07(FALSE), 10, 11, 12 VALUES - $A=2, B=2, C=1$	[5]	
(h)		- \quad The first input (A) is greater than the second input (B) - Any suitable example	[2]	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

