
OXFORD CAMBRIDGE AND RSA EXAMINATIONS

General Certificate of Education Advanced Subsidiary Level

COMPUTING 2507
Structured Practical Computing Tasks

Issued September 2004
Maximum mark 120

INSTRUCTIONS TO CANDIDATES

• You should attempt all tasks, working independently from other candidates.

• There are no time limitations on the tasks other than that they must be submitted by the
appropriate internal deadline set by the Candidate’s Centre. This deadline will reflect the need for
the Centre to complete marking of the tasks and submit the marks to OCR by the required date.

• There are no restrictions on computing facilities, hardware or software, that may be used.

• You are strongly advised to keep all your working notes as these may be required by the
moderator.

• Reasons for answers to tasks are expected to form part of the work submitted.

Notice to candidates
1 The work which you submit for assessment must be your own.

However, you may:

(a) quote from books or any other sources: if you do, you must state which ones you have
used;

(b) receive guidance from someone other than your teacher: if so you must tell your
teacher, who will record the nature of the assistance given to you.

2 If you copy from someone else or allow another candidate to copy from you, or if you cheat in
any other way, you may be disqualified from at least the subject concerned.

3 When you hand in your coursework for assessment, you will be required to sign that you
have understood and followed the coursework and portfolio requirements for the subject.

ALWAYS REMEMBER – YOUR WORK MUST BE YOUR OWN

This question paper consists of 8 printed pages.

SP (SM) S74921/3
© OCR 2004 [Y/100/0788] Registered Charity Number: 1066969 [Turn over

2

2507 S05

Task 1 [43 marks]

This is a software development task and an implementation task.

Courses at a university consist of modules. Each module is taught by one or more lecturers and each
lecturer teaches at least one module. Each module has a book list consisting of one or more books.
A book may be used on more than one module.

Modules have a code and a name. The code consists of two letters followed by 4 digits, for example
CP1051 is called An Introduction to Visual Basic.

Each lecturer has a telephone extension number and an office; these may be shared with other
lecturers. The telephone extension is a four-digit number and all offices have a five-character
identification consisting of two letters and three digits, for example, MU217. Other than the names of
lecturers, no personal details of lecturers are to be held.

A database is required that holds details of lecturers, modules and books. It has already been decided
to hold the data in the following five tables.

Lecturer – holds details of each lecturer.

Module – holds details of each module.

LecturerModule – acts as a link between the Lecturer and Module tables.

Book – holds details of each book.

ModuleBook – acts as a link between the Module and Book tables.

(a) (i) Design the Lecturer table. You must state the name, data type and purpose of each
attribute in the table. You should also specify the key for the table.

You may use a screen dump (or dumps) of your design as evidence. [5]

(ii) Design the Module table. You must state the name, data type and purpose of each
attribute in the table. You should also specify the key for the table.

You may use a screen dump (or dumps) of your design as evidence. [3]

(iii) Design the LecturerModule table. You must state the name, data type and purpose of
each attribute in the table. You should also specify the key for the table.

You may use a screen dump (or dumps) of your design as evidence. [3]

(iv) Design the Book table. You must state the name, data type and purpose of each attribute
in the table. You should also specify the key for the table.

You may use a screen dump (or dumps) of your design as evidence. [4]

(v) Design the ModuleBook table. You must state the name, data type and purpose of each
attribute in the table. You should also specify the key for the table.

You may use a screen dump (or dumps) of your design as evidence. [3]

3

2507 S05 [Turn over

(b) Create validation checks to ensure that

(i) the office identification is valid;

(ii) the module code is valid;

(iii) the telephone extension number is valid;

(iv) only valid data is put in the LecturerModule table;

(v) only valid data is put in the ModuleBook table.

You should include evidence that you have created all five validations. [5]

(c) Create data for your five tables. You should include at least 5 modules, 10 books and
15 lecturers. Make sure that the data is suitable for testing the rest of this task.

You may use screen dumps of your tables as evidence. [10]

Parts (d) and (e) ask you to produce reports. Marks will be awarded for the layout and contents of
the reports.

(d) Create a report that lists the details of all the lecturers for each module.

Include a copy of the report as evidence. You should also include evidence showing how your
solution created the report. [5]

(e) Create a report that lists full details of all the books used by a lecturer. The identity of the
lecturer should be input by the user when the report is requested.

Include evidence that the user has input the Lecturer ID and a copy of the report produced.
You should also include evidence showing how your solution created the report. [5]

4

2507 S05

Task 2 [25 Marks]

This is an algorithm trace task. No implementation is required.

Read the following algorithm.

READ Size, Start, Step
Row = 1
Col = (Size + 1) / 2
Count = 1
Number = Start
REPEAT

Array(Row, Col) = Number
Number = Number + Step
Count = Count + 1
NewRow = Row –1
IF NewRow < 1 THEN

NewRow = Size
END IF
NewCol = Col – 1
IF NewCol < 1 THEN

NewCol = Size
END IF
IF Array(NewRow, NewCol) NOT EMPTY THEN

NewRow = Row + 1
NewCol = Col
IF NewRow > Size THEN

NewRow = 1
END IF

END IF
Row = NewRow
Col = NewCol

UNTIL Count > Size * Size

(a) (i) Copy and complete Table 2.1 to show successive values of each of the variables when
the input data is

3, 1, 1.

Table 2.1 [10]

Size
Start
Step
Row
Col
Count
Number
Array(1,1)
Array(1,2)
Array(1,3)
Array(2,1)
Array(2,2)
Array(2,3)
Array(3,1)
Array(3,2)
Array(3,3)
NewRow
NewCol

5

2507 S05 [Turn over

(ii) Copy and complete Table 2.2 to show the results of your trace.

Table 2.2 [1]

(b) The above algorithm produces a pattern for entering numbers into a square array.
Use this pattern to complete a copy of Table 2.3 if the input is

7, 3, 2.

Table 2.3 [9]

(c) (i) Explain what would happen if the input data were

8, 1, 1. [2]

(ii) Explain how to modify the algorithm so that it provides an appropriate response to this
data. [3]

1

2Row

3

Col

1 2 3

1

2

Row

3

4

5

6

7

Col

1 2 3 4 5 6 7

6

2507 S05

Task 3 [31 marks]

This is a software development task and an implementation task.

This task is to be solved by using a high-level language of your choice. You should state the name of
the language used at the start of your solution.

A manufacturer of games has decided to design a new snakes and ladders board consisting of
100 squares. The manufacturer has asked a systems analyst to design a simulation of the game using
different designs. Also, the systems analyst has been told that there must be exactly 10 snakes and
10 ladders. The number of squares that a snake sends a player back must lie between 10 and 30.
The number of squares that a ladder sends a player forward must lie between 10 and 30.

The systems analyst has decided to represent the board by using a one-dimensional array with
100 cells numbered from 1 to 100. Initially each cell is to be set to zero.

When the game starts the user is asked to input the positions of the snakes. This is to be done by
entering, for each snake, the square on which its head is to be and the number of squares a player
must go back when landing on a snake’s head. For each snake, the number of squares to go back is
then to be stored in the cell representing the head of the snake, as a negative integer.

This is repeated for the ladders by inputting the squares for the feet of the ladders and the number of
squares a player must go forward when landing on the foot of a ladder. For each ladder, the number of
squares to go forward should be stored as a positive integer in the cell representing the foot of the
ladder.

Part of the array may look similar to that in Fig. 3.1. This indicates that there is a snake’s head in cell 51
and its tail is in cell 41. The bottom of a ladder is in cell 40 and its top is in cell 52. The remaining
squares do not contain any snakes or ladders.

Fig. 3.1

You should annotate all your code and use meaningful names throughout.

(a) Create annotated code that initialises the board ready for the user input. [2]

(b) Create an interface that allows the user to input the data as described above. Your code
should validate the input and store the data as described above. You need only check for
values that satisfy the criteria given above. [5]

Cell Index
Data

40
12 0 0 0 0 0 0 0 0 0 0 –10 0 0

41 42 43 44 45 46 47 48 49 50 51 52 53

7

2507 S05 [Turn over

The rules of this game of Snakes and Ladders are

• On each turn, a player moves forward the number of squares shown when a 6-sided die
is thrown.

• If a player lands on the head of a snake, the player must move to the tail of the snake.

• If a player lands on the foot of a ladder, the player must move to the top of the ladder.

• If a move would result in the player going off the board, no move is made.

You need only simulate the moves of a single player for the rest of this task.

(c) Create annotated code, in a high-level language, that simulates a game of snakes and
ladders and outputs the total number of throws. [8]

(d) Modify your solution so that it asks a user to input the number of games to be played. Your
solution should then play that number of games and output the average number of ‘throws’
per game. [4]

(e) The user now wishes to be able to enter the number of snakes and the number of ladders
before entering their details. The number of each has to be in the range 5 to 10.

Modify your solution so that the user can enter the number of snakes and the number of
ladders and their details. [6]

(f) The systems analyst now specifies the following restrictions on data entry.

• A square can only contain one of

•• the top of a ladder

•• the foot of a ladder

•• the head of a snake

•• the tail of a snake
• No ladder goes off the board
• No snake goes off the board

Modify your program to ensure it handles these restrictions. Annotate your modifications to
show how you have solved this task. You should provide sample runs to show the results of
using one set of valid data and one set of invalid data for each restriction. [6]

8

2507 S05

Task 4 [21 Marks]

This is an algorithm trace task. No implementation is required.

Read the following algorithm for the recursive function called Mystery. X() is a one-dimensional array.

Function Mystery(X(), N)

IF N = 1 THEN
Mystery = 1

ELSE
Te mp = Mystery(X(), N - 1)
IF X(N) >= X(Temp) THEN

Mystery = N
ELSE

Mystery = Temp
ENDIF

ENDIF

End Function Mystery

(a) Write down the exact output when the function is called with

(i) Output ‘The answer is: ’, Mystery(A(), 5)

if A(1) = 6, A(2) = 10, A(3) = 6, A(4) = 18, A(5) = 15.

(ii) Output ‘The answer is: ’, Mystery(A(), 5)

]2[.81 =)5(A ,51 =)4(A ,21 =)3(A ,81 =)2(A ,61 =)1(A fi

(b) The function is called with

Mystery(A(), 3)

where A(1) = 28, A(2) = 20 and A(3) = 28.

Produce a diagram showing each step of the algorithm and the function calls. [9]

(c)]3[.mhtirogla eht fo esoprup eht ebircseD

(d) Write an iterative algorithm that does the same task as the recursive algorithm. [7]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable
e�ort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be
pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations
Syndicate (UCLES), which is itself a department of the University of Cambridge.

