
IMPORTANT NOTICE

University of Cambridge International Examinations (CIE) in the UK and USA

With effect from the June 2003 examination University of Cambridge International Examinations
will only accept entries in the UK and USA from students registered on courses at CIE registered
Centres.

UK and USA private candidates will not be eligible to enter CIE examinations unless they are
repatriating from outside the UK/USA and are part way through a course leading to a CIE
examination. In that case a letter of support from the Principal of the school which they had
attended is required. Other UK and USA private candidates should not embark on courses leading
to a CIE examination after June 2003.

This regulation applies only to entry by private candidates in the UK and USA. Entry by private
candidates through Centres in other countries is not affected.

Further details are available from Customer Services at University of Cambridge International
Examinations.

You can find syllabuses and information about CIE teacher training events on the CIE
Website (www.cie.org.uk).

Page

INTRODUCTION 1

AIMS 1

ASSESSMENT OBJECTIVES 2

WEIGHTING OF ASSESSMENT OBJECTIVES 2

SCHEME OF ASSESSMENT 3

COURSEWORK 4

STRUCTURE OF THE SYLLABUS 5

SUBJECT CONTENT 6

GUIDANCE ON MARKING THE PRACTICAL PROGRAMMING PROJECT (9691/02) 22

CANDIDATE RECORD CARD FOR THE PRACTICAL PROGRAMMING PROJECT
(9691/02)

25

COURSEWORK ASSESSMENT SUMMARY FORM FOR THE PRACTICAL
PROGRAMMING PROJECT (9691/02)

27

GUIDANCE ON SELECTING THE COMPUTING PROJECT (9691/04) 29

GUIDANCE ON MARKING THE COMPUTING PROJECT (9691/04) 30

CANDIDATE RECORD CARD FOR THE COMPUTING PROJECT (9691/04) 35

COURSEWORK ASSESSMENT SUMMARY FORM FOR THE COMPUTING PROJECT
(9691/04)

37

Copies of syllabuses, past papers and Examiners' reports are available on CD-ROM and
can be ordered using the Publications Catalogue, which is available on CIE Online at
http://www.cie.org.uk/CIE/WebSite/qualificationsandawardshub/orderpublications/
orderpublications.jsp.

COMPUTING 9691 A/AS LEVEL 2006

 1

This syllabus is designed to give greater flexibility both to teachers and to candidates.

It is envisaged that students will utilise the skills and knowledge of computing in one of three ways.
Firstly, to provide a general understanding and perspective of the use of computer technology and
systems, which will inform their decisions and support their participation in an increasingly
technologically dependent society. Secondly to provide the necessary skills and knowledge to
seek employment in areas that utilise computing. Thirdly, students may continue to develop their
knowledge and understanding of computing through entry to higher education, where this
qualification will provide a useful foundation for further study of computing or more specialist
aspects of computing.

Centres and candidates may choose:

• to take all Advanced Level components in the same examination session leading to the full
A Level.

• to follow a staged assessment route to the Advanced Level by taking the Advanced
Subsidiary (AS) qualification in an earlier examination session. Subject to satisfactory
performance such candidates are then only required to take the final part of the assessment
(referred to in this syllabus as A2) leading to the full A Level.

• to take the Advanced Subsidiary (AS) qualification only.

The aims of a course based on this syllabus, whether leading to an AS or A Level qualification,
should be to:

1. develop an understanding of the main principles of solving problems using computers;

2. develop an understanding of the range of applications of computers and the effects of their
use;

3. develop an understanding of the organisation of computer systems including software, data,
hardware, communications and people;

4. acquire the skills necessary to apply this understanding to developing computer-based
solutions to problems.

In addition, an aim of a course leading to the full A Level qualification should be to:

5. develop an understanding of the main principles of systems analysis and design, methods of

problem formulation and planning of solutions using computers, and systematic methods of
implementation, testing and documentation.

COMPUTING 9691 A/AS LEVEL 2006

 2

The assessment objectives are common to both the AS and A2 assessments.

A Knowledge with Understanding

Candidates should be able to:

1. describe and explain the impact of Computing in a range of applications and show an

understanding of the characteristics of computer systems (hardware, software and
communication) which allow effective solutions to be achieved;

2. describe and explain the need for and the use of various forms of data organisation and

processing to support the information requirements of a particular application;

3. describe and explain the systematic development of high quality solutions to problems and

the techniques appropriate for implementing such solutions;

4. comment critically on the social, legal, ethical and other consequences of the use of

computers.

B Skills

Candidates should be able to:

1. analyse a problem and identify the parts which are appropriate for a computer-based

solution;

2. select, justify and apply appropriate techniques and principles to develop data structures

and algorithms for the solution of problems;

3. design, implement and document an effective solution using appropriate hardware,

software and programming languages.

Percentage of Advanced Level

Paper Assessment Objective A Assessment Objective B Total weighting

1 25 ± 2 10 ± 2 37.5

2 5 ± 2 10 ± 2 12.5

3 15 ± 2 15 ± 2 30

4 5 ± 2 15 ± 2 20

COMPUTING 9691 A/AS LEVEL 2006

 3

The Advanced Subsidiary GCE forms 50% of the assessment weighting of the full Advanced GCE.
Advanced Subsidiary GCE is assessed at a standard between IGCSE and Advanced GCE and
can be taken as a stand-alone course or as the first part of the full Advanced GCE course.

Assessment is by means of two units for Advanced Subsidiary GCE and four units for Advanced
GCE.

Advanced Subsidiary GCE Candidates take papers 1 and 2.

Advanced GCE Candidates take papers 1, 2, 3 and 4.

Weighting

Paper Type of Paper Duration Marks AS A2 A

1 Written paper 2 ½h 90 75 - 37.5

2
Practical Programming
Project

- 50 25 - 12.5

3 Written paper 2h 90 - 60 30

4 Computing Project - 60 - 40 20

Paper 1
This paper will consist of a variable number of compulsory questions of variable mark value.
Candidates will answer on lined paper. This paper will be set according to the content of section 1
of the syllabus.

Paper 2
This paper is a computer programming project. Students should select a problem, the solution to
which will enable them to demonstrate the skills required by the syllabus in Section 2.

The programming language used is at the discretion of the candidate and the Centre. CIE suggest
that Visual Basic, Pascal, C++ and Java would all be suitable vehicles for the production of the
software. However, this list is not exhaustive and if a candidate would like to use another language
there should not be a problem, but Centres are advised to contact CIE Customer Services to
ensure that another language is acceptable before beginning the work.

Candidates are free to select any problem for solution, but should discuss their chosen problem in
detail with the staff at the Centre to ensure that the solution will demonstrate their abilities to the
full.

Candidates may receive guidance in choosing their problem, but Centres should ensure that work
from their candidates is sufficiently different to make them individual pieces of work.

This programming project should be completed during the first year of a two year course. It may be
submitted, along with Paper 1, at the end of the first year in order to qualify for the award of AS in
Computing, or may be saved and submitted at the end of the two years, in addition to Paper 1, 3
and the project to qualify for the award of A Level Computing. In this way, Centres wishing to enter
candidates for Papers 1 and 3 can complete this coursework during the first year of the course.
The projects will be marked by Centres and moderated by CIE.

Paper 3
This paper will consist of a variable number of compulsory questions of variable mark value.
Candidates will answer on lined paper. This paper will be set according to the content of Section 3
of the syllabus, but will also assume knowledge learned in Section 1.

Paper 4
Further details of the project are to be found in Section 4 of the syllabus.

COMPUTING 9691 A/AS LEVEL 2006

 4

AS

Section 2 – Practical Programming Project. (50 marks)
This unit examines knowledge and understanding as well as skills. The programming project is
intended to allow candidates to demonstrate their competence in the skills of program design,
development, testing and documentation.
The criteria which should be followed when producing their solution are clearly set out in Section 2
of the syllabus.
The project will be marked at the Centre according to the criteria outlined in the section Guidance
on Marking the Practical Programming Project, which can be found at the back of this syllabus.
The marking criteria will not change from year to year. The marked projects will be moderated by
CIE. If Centres are uncertain about the appropriateness of a problem they should seek advice from
CIE.

A2

Section 4 – Computing Project. (60 marks)
This unit assesses candidates’ ability to develop a computer-based solution to a real life problem
requiring the skills of analysis, design, development, testing, implementation and evaluation.
Candidates should formulate the task in negotiation with their teacher. If Centres are uncertain
about the appropriateness of a problem they should seek advice from CIE.

Assessment and Moderation.

All coursework is marked by the teacher and internally standardised by the Centre. Coursework is
then submitted to CIE by the specified date. The purpose of moderation is to ensure that the
standard for the award of marks in coursework is the same for each Centre, and that each teacher
has applied the same standards appropriately across the range of candidates within the Centre.

Minimum Coursework Requirements.

If a candidate submits no work for a coursework unit, then the candidate should be indicated as
being absent from that unit on the coursework mark sheets submitted to CIE. If a candidate
completes any work for the coursework unit, then the work should be assessed according to the
criteria and marking instructions, and the appropriate mark awarded, which may be 0 (zero).

Authentication.

As with all coursework, the teacher must be able to verify that the work submitted for assessment
is the candidate’s own work. Sufficient work must be carried out under direct supervision to allow
the teacher to authenticate the coursework marks with confidence.
CIE are happy to rely on the professionalism of teachers to ensure fairness with this work.

Differentiation.

In the question papers, differentiation is achieved by setting questions which are designed to
assess candidates at their appropriate levels of ability and which are intended to allow all
candidates to demonstrate what they know, understand and can do.
In coursework, candidates should choose their project problem so that the work enables them to
display positive achievement and that will allow them to demonstrate their full range of abilities.

Please copy the Coursework Assessment Summary Form at the back of this syllabus
document and submit with both the Practical Programming Project and the Computing
Project. The Candidate Record card for both the Practical Programming Project and the
Computing Project should be attached to each candidate’s submission.

COMPUTING 9691 A/AS LEVEL 2006

 5

This syllabus is set out in the form of teaching sections. Each teaching section is assessed by its
associated paper. The Advanced Subsidiary syllabus consists of teaching sections 1 and 2 only,
and the Advanced Level syllabus consists of all four teaching sections.

This section of the specifications gives the subject content for each section, as shown below.

Section Associated Paper Section Title

1 1 Computer Systems, Communications and Software

2 2 Practical Programming Project

3 3 Systems Software Mechanisms, Machine Architecture,
Database Theory, Programming Paradigms and Integrated
Information Systems

4 4 Computing Project

Each section is presented as a set of sub-sections, each with details of content and associated
learning outcomes. An indication of recommended prior knowledge is given for each section,
together with details of any links to other sections.

Section 1: Computer Systems, Communications and Software is the foundation for all
subsequent sections. It provides candidates with an understanding of the core aspects of
computer systems, which is developed and enhanced in subsequent sections.

Section 2: Practical Programming Project requires candidates to demonstrate their skills in a
programming language by selecting a problem to solve. The solution to the problem should
encompass as many of the criteria listed in Section 2 of the syllabus as the candidate is capable of
using. Candidates and Centres should be aware that demonstration of the skills will be necessary,
within the context of the problem solution, in order to earn marks in the assessment.
It is envisaged that this project will be a long term piece of work to be completed during year one
of the course. It will be submitted for moderation in the same session that the candidate offers
Paper 1. In this way, Centres that choose to do Papers 1 and 3 at the end of year 2 of a two year
course, can do one piece of coursework in each year.
It is envisaged that most candidates will use one of the languages listed on page 3. Other
languages are welcomed, though CIE Customer Services should be consulted before the project is
started.

Section 3: Systems Software Mechanisms, Machine Architecture, Database Theory,
Programming Paradigms and Integrated Information Systems provides candidates with further
ability to extend skills, knowledge and understanding of computing concepts, gained in Section 1,
to a range of applications in which computer systems are used.

Section 4: Computing Project requires candidates to identify a well-defined user-driven problem,
involving a third-party user, and to generate a solution. As for Section 2, this is done using
software tools chosen by the candidate and may include a programming language, an appropriate
applications package or other software. It is envisaged that work on the Project will begin in
parallel with work on Section 3.

COMPUTING 9691 A/AS LEVEL 2006

 6

SECTION 1: COMPUTER SYSTEMS, COMMUNICATIONS AND SOFTWARE

This section provides candidates with an understanding of the following core aspects of computer
systems:

components of a computer system and modes of use;
system software;
programming tools and techniques;
data: their representation, structure and management;
hardware;
data transmission and networking.

The systems development life cycle is studied with reference to particular applications. Therefore,
candidates are expected to look at a range of different types of application areas. Although
candidates are not expected to have specific knowledge of every one, candidates should be able
to make use of relevant examples for the purpose of illustration. This section also provides
candidates with understanding of the following aspects of computer systems:

systems development life cycle;
choosing applications software for application areas;
handling of data in information systems;
characteristics of information systems;
implications of computer use.

1.1 Components of a Computer System and Modes of Use

 Content

1.1.1 Types of hardware
1.1.2 Types of software

Learning outcomes

Candidates should be able to:

(a) define the terms hardware, software, input device, storage device and output device.

(b) describe the purpose of input devices, storage devices and output devices.

(c) define the different types of software: operating system, user interface, translator, utilities,
programming languages and generic/common applications software.

(d) describe the hardware used to enable computers to communicate.

1.2 System Software

 Content

1.2.1 Operating systems

1.2.2 User interfaces
1.2.3 Utility software

Learning outcomes

Candidates should be able to:

(a) describe the purpose of operating systems.

(b) describe the characteristics of different types of operating systems and their uses : batch,
real-time, single-user, multi-user and network systems.

(c) describe different types of user interface: forms, menus, GUI, natural language and
command line, suggesting the characteristics of user interfaces which make them
appropriate for use by different types of user.

(d) describe the purpose of the following types of utility software: disk formatting, file handling
(deleting, copying, moving, sorting), hardware drivers, file compression and virus checkers.

COMPUTING 9691 A/AS LEVEL 2006

 7

1.3 Programming Tools and Techniques

Content

1.3.1 Problem-solving techniques
1.3.2 Features of procedural programming languages
1.3.3 Basic translation process
1.3.4 Program testing
1.3.5 Program maintenance

Learning outcomes

Candidates should be able to:

(a) solve problems in a structured way, using logic and reason.

(b) describe techniques for writing software, including the splitting up of a problem into small
sections and the use of appropriate techniques showing step-wise refinement/top-down and
bottom-up design.

(c) explain that translators are needed to convert source code to object code (detailed
knowledge of the types of translator and the translation process is not required).

(d) describe and give examples of types of programming error (syntax, logic and arithmetic).

(e) design a test plan using different testing strategies such as white box testing, black box
testing, alpha- and beta-testing.

(f) select suitable test data for a given problem.

(g) describe and use appropriately the tools, techniques and methods available for identifying
programming errors (translator diagnostics, debugging tools, desk checking, bottom up
programming, test strategies).

(h) demonstrate an understanding of the need for the use of comments, meaningful data
names, indentation and modularity, in order to facilitate the ongoing maintenance of
programs.

(i) dry run an algorithm given in a pseudo code format.
(j) produce an algorithm, in whatever form, to solve a simple problem.

1.4 Data: Its Representation, Structure and Management

Content

1.4.1 Data types
1.4.2 Data structures
1.4.3 Data management

Learning outcomes

Candidates should be able to:

(a) explain the use of codes to represent a character set (e.g. ASCII and EBCDIC).

(b) explain the use of different data types: integer, Boolean, date/time, currency and character.

(c) express integers in binary form.

(d) express numbers in binary form.

(e) define and use arrays (single and multi-dimensional) for solving simple problems, including
initialising arrays, reading data into arrays and performing a simple serial search on an
array.

(f) define and use linked lists (single pointer) for solving simple problems, including initialising
linked lists and performing a simple serial search on a linked list (detailed algorithms are not
expected).

(g) describe the LIFO and FIFO features of the data structures stacks and queues.

(h) explain how data is stored in files in the form of fixed length records comprising items in
fields.

(i) design a record format.

(j) estimate the size of a file.

(k) define and explain the difference between serial, sequential, indexed sequential and random
access to data, using examples and stating their comparative advantages and
disadvantages.

COMPUTING 9691 A/AS LEVEL 2006

 8

(l) describe how serial, sequential and random organisation of files may be implemented using
indexes and hashing algorithms as appropriate (detailed algorithms and procedures will not
be required).

(m) select appropriate data types/data structures for a given problem and explain the
advantages and disadvantages of alternative choices.

(n) explain the procedures involved in backing up data and archiving, including the difference
between data that is backed up and data that is archived.

1.5 Hardware

Content

1.5.1 Processor components
1.5.2 Primary and secondary storage
1.5.3 Peripheral devices

Learning outcomes

Candidates should be able to:

(a) describe the function and purpose of the control unit, memory unit and arithmetic logic unit
(ALU) as individual parts of a processor.

(b) explain the difference between types of primary memory and their uses (RAM, ROM).

(c) describe the basic features, advantages, disadvantages and use of secondary storage
media, both magnetic and optical.

(d) describe use of buffers and interrupts in the transfer of data between secondary storage and
primary memory.

(e) describe a range of common peripheral devices in terms of their features, advantages,
disadvantages and uses.

(f) relate the choice of peripheral device to a given application.

1.6 Data Transmission and Networking

Content

1.6.1 Data transmission
1.6.2 Circuit switching and packet switching
1.6.3 Protocols
1.6.4 Networking

Learning outcomes

Candidates should be able to:

(a) describe the characteristics of a local area network (LAN) and a wide area network (WAN).

(b) show an understanding of the hardware and software needed for a local area network (LAN)
and for accessing a wide area network (WAN).

(c) describe basic network topologies (bus, star and ring) explaining the benefits and
drawbacks of each topology.

(d) describe the different types of data transmission: serial and parallel; and simplex, half
duplex and duplex modes.

(e) explain the relationship between bit rates and the use of data content.

(f) recognise that errors can occur in data transmission, and explain the use of parity checks
and check sums in detecting and correcting these errors.

(g) explain the difference between packet switching and circuit switching.

(h) define the term protocol.

(i) describe the need for communication between devices, and between computers, and
explain the need for protocols to establish communication links (candidates will not be
expected to have detailed knowledge of specific protocols).

(j) discuss the advantages and disadvantages of networking.

COMPUTING 9691 A/AS LEVEL 2006

 9

1.7 Systems Development Life Cycle

Content

1.7.1 Identification of problem
1.7.2 Feasibility study
1.7.3 Information collection
1.7.4 Analysis of a problem, based upon information collected, including producing a

requirements specification
1.7.5 Design of system to fit requirements
1.7.6 Development and testing of system
1.7.7 Implementation of system
1.7.8 Maintenance of system
1.7.9 Obsolescence

Learning outcomes

Candidates should, with reference to particular applications, be able to:

(a) understand the system life cycle as an iterative process.

(b) explain the importance of defining a problem accurately.

(c) describe the function and purpose of a feasibility study.

(d) explain the importance of determining the information requirements of a system and
describe different methods of fact finding, including questionnaires, observation, and
structured interviews, highlighting the advantages and disadvantages of each method.

(e) describe what is involved when analysing the requirements of a system, explaining the
nature of the requirements specification and its content:, identify inefficiencies/problems,
user requirements and hardware and software requirements.

(f) design the data structures, inputs, outputs and processing using diagrammatic
representations where appropriate.

(g) explain the importance of evaluating the system against initial specifications.

(h) explain the content and importance of documentation in the system life cycle, including the
requirements specification, design specification, program specifications, technical and user
manuals.

(i) explain the importance of system testing and implementation planning.

(j) explain the purpose of maintaining the system, and explain the need for system review and
reassessment, understanding that software has a limited life span.

1.8 Choosing Applications Software for Application Areas

Content

1.8.1 Custom written software versus off-the-shelf software packages
1.8.2 Application areas
1.8.3 Applications software

Learning outcomes

Candidates should, within context, be able to:

(a) distinguish between custom-written software and off-the-shelf software packages, and
discuss the advantages and disadvantages of each in given situations.

(b) identify the features of common applications found in business, commercial and industrial
applications: e.g. stock control, order processing, payroll, process control, point of sale
systems, marketing, computer aided design (CAD), computer aided manufacture (CAM).

(c) identify suitable common generic applications software for particular application areas e.g.
word processing, spreadsheets, desktop publishers (DTP), presentation software, drawing
packages.

(d) identify application areas for which generic applications software is not appropriate.

(e) describe the purpose and impact of different types of generic applications software, for
example word processing, spreadsheets, desktop publishers (DTP), presentation software,
drawing packages.

(f) explain how a common software package can be used to solve a given, simple, problem.

COMPUTING 9691 A/AS LEVEL 2006

 10

1.9 Handling of Data in Information Systems

Content

1.9.1 Data capture, preparation and data input
1.9.2 Validation and verification of data
1.9.3 Outputs from a system

Learning outcomes

Candidates should, within a context, be able to:

(a) describe manual and automatic methods of gathering and inputting data into a system,
including form design, keyboard entry, voice recognition, barcodes, optical mark recognition
(OMR), magnetic stripe cards, optical character recognition (OCR), data logging, touch
screens.

(b) describe image capture by use of a scanner, video capture card and digital
camera/camcorder.

(c) explain the techniques of validation and verification, and describe validation tests which can
be carried out on data.

(d) describe possible output formats such as graphs, reports, interactive presentations, sound,
video, images and animations stating the advantages and disadvantages of each format.

(e) discuss the need for a variety of output formats according to the target audience.
Knowledge of timeliness, relevance etc. of intended output is required.

1.10 Designing the User Interface

Content

1.10.1 Interface design

1.10.2 Criteria for selecting appropriate hardware

Learning outcomes

Candidates should be able to:

(a) discuss the importance of good interface design.

(b) select appropriate peripheral hardware, including special purpose input devices, for a given
application, and justify the choice.

(c) discuss human computer interaction (HCI) design issues such as the use of colour, layout,
and content.

(d) distinguish between different styles of interface, including forms, menus, command-line
input, natural language, speech, direct manipulation, and their relevance to application
design.

(e) identify the required characteristics of a user interface with respect to information, type of
user, physical location and current technology.

(f) understand the potential problem of speed mismatch between user, peripheral and
processor.

1.11 Characteristics of Information Systems

Content

1.11.1 Passive versus interactive systems
1.11.2 Characteristics and uses of management information systems
1.11.3 Batch processing and rapid response applications
1.11.4 Knowledge based systems

Learning outcomes

Candidates should, within a context, be able to:

(a) give examples of, and describe the differing characteristics of, passive information systems
and interactive information systems.

(b) describe the characteristics and uses of management information systems (MIS).

(c) identify a range of applications requiring batch processing and applications in which a rapid
response is required.

(d) describe the use of knowledge based (expert) systems in fault diagnosis, geological surveys
and medical diagnosis.

COMPUTING 9691 A/AS LEVEL 2006

 11

1.12 Implications of Computer Use

Content

1.12.1 Economic implications
1.12.2 Social implications
1.12.3 Legal implications
1.12.4 Ethical implications

Learning outcomes

Candidates should be able to:

(a) discuss changing trends in computer use and their economic, social, legal and ethical
effects on society.

(b) explain changes to society brought about by the introduction and use of computer systems
(e.g. changing leisure patterns and work expectations).

(c) discuss steps which can be taken to protect confidentiality of data held on computer
systems.

(d) understand the need for data protection legislation.

(e) discuss the social and ethical implications of access to information whose value is
controversial.

(f) discuss health and safety implications (for example, repetitive strain injury (RSI)) of
increased computer use, including measures to ensure a healthy and safe working
environment for employees.

COMPUTING 9691 A/AS LEVEL 2006

 12

SECTION 2: PRACTICAL PROGRAMMING PROJECT

This section is designed to allow candidates to develop the following skills:

program design;
program development;
testing;
implementation.

This section covers basic knowledge and understanding, as well as skills. It is expected that
candidates will have studied the requisite theory in order to carry out the project successfully.

The Practical Programming Project is an individual piece of well-documented work involving a
problem that can be solved using a computing system. The emphasis is on the solution of
problems in a structured way using logic and reason to split a problem into sections that can be
programmed using a procedural or object-oriented programming language.

Candidates are free to choose problems/tasks identified by themselves or their teacher. The
choice of problem/task must allow the candidate to demonstrate the following programming skills
in one program:

 arrays and/or records
 different data types
 selection

iteration
 procedures

functions
 searching techniques
 files

Candidates may solve the same problem or use the same initial scenario for a project but the
solution must be developed on an individual basis, no collaborative work is allowed.

Teachers are expected to give educational guidance during the design process but the work
submitted must be the candidate's own. Only the code designed and written by the candidate
should be marked by the teacher.

The teacher marks the projects using the marking criteria in the Guidance on Marking Practical
Programming Projects section of this syllabus, after which moderation takes place according to
CIE procedures.

Candidates should not submit magnetic or optical media as part of their supporting evidence.

2.1 Problem /Task Identification 2 marks

Candidates should be able to describe a problemCtasi that can be solaed bt ritinC a

proCram.

 2.1.1 Problem /Task description

Learning Outcomes

Candidates should be able to:

(a) describe a problem in terms of inputs, processes and outputs.

2.2 Program Design 6 marks

Content

Candidates should be able to specify and document a design. The design specification may
include the method of solving a problem, for example:

2.2.1 Hardware requirements

2.2.2 Input design

2.2.3 Output design

2.2.4 Data structures
2.2.5 Processes

COMPUTING 9691 A/AS LEVEL 2006

 13

Learning Outcomes

Candidates should be able to:

(a) specify the required hardware for a problem/task.

(b) design and document screen layouts.

(c) design and document report layouts, screen displays and/or other forms of output (for
example, audio output).

(d) design and document the data structures necessary to model a problem/task.
(e) design and document a process model.

2.2 Program Development 28 marks

Content

2.3.1 Interpreting a design solution

2.3.2 Developing a programmed solution

Learning Outcomes

Candidates should be able to:

(a) interpret a given process model.
(b) specify any variables and data structures needed in the solution of a problem.

(c) develop a solution using a programming language.

(d) develop inputs/outputs using the features of the programming language.
(e) make use of the commenting feature of the programming language, meaningful variable

names, indentation and modularity.

2.3 Testing 8 marks

Content

2.4.1 Test strategy

2.4.2 Test data
2.4.3 Testing a programmed solution

Learning outcomes

Candidates should be able to:

(a) identify, develop and document a test strategy for a given problem;

(b) select suitable test data for a given problem.

(c) test a software solution, providing documented evidence that the solution works

2.4 Implementation 6 marks

Content

2.5.1 Installation instructions

2.5.2 Technical Documentation

Learning outcomes

Candidates should be able to:

(a) prepare basic installation instructions

(b) prepare basic technical documentation for the software solution.

COMPUTING 9691 A/AS LEVEL 2006

 14

SECTION 3: SYSTEMS SOFTWARE MECHANISMS, MACHINE ARCHITECTURE, DATABASE
 THEORY, PROGRAMMING PARADIGMS AND INTEGRATED INFORMATION
 SYSTEMS

The content includes:

the functions of operating systems;
the functions and purposes of translators;
computer architectures and the fetch-execute cycle;
data representation, data structures and data manipulation;
programming paradigms;
databases;
use of systems and data;
systems development, implementation, management and applications;
simulation and real-time processing;
common network environments, connectivity and security issues.

Recommended Prior Knowledge

Candidates should have studied Section 1.

3.1 The Functions of Operating Systems

Content

3.1.1 Features of operating systems
3.1.2 Scheduling
3.1.3 Interrupt handling
3.1.4 Job queues and priorities
3.1.5 Memory management
3.1.6 Spooling
3.1.7 Modern personal computer operating systems

Learning Outcomes

Candidates should be able to:

(a) describe the main features of operating systems: memory management, scheduling
algorithms and distributed systems.

(b) explain how interrupts are used to obtain processor time and how processing of interrupted
jobs may later be resumed (typical sources of interrupts should be identified and any
algorithms and data structures should be described).

(c) define and explain the purpose of scheduling, job queues, priorities and how they are used
to manage job throughput.

(d) explain how memory is managed in a typical modern computer system (virtual memory,
paging and segmentation should be described).

(e) describe spooling, explaining why it is used.

(f) describe the main components of a typical desktop PC operating system.

(g) describe the main components of a network operating system including transparency,
directory services, security and network printing.

3.2 The Functions and Purposes of Translators

Content

3.2.1 Types of translators

3.2.2 Lexical analysis

3.2.3 Syntax analysis

3.2.4 Code generation

3.2.5 Linkers and loaders

Learning Outcomes

Candidates should be able to:

(a) describe the difference between interpretation and compilation.

(b) describe what happens during lexical analysis.

COMPUTING 9691 A/AS LEVEL 2006

 15

(c) describe what happens during syntax analysis, explaining how errors are handled.

(d) explain the code generation phase.

(e) explain the purpose of linkers and loaders.

3.3 Computer Architectures and the Fetch-Execute Cycle

Content

3.3.1 Von Neumann architecture
3.3.2 Registers: purpose and use
3.3.4 Fetch-execute cycle
3.3.5 Parallel processors

Learning outcomes:

Candidates should be able to:

(a) describe basic Von Neumann architecture, identifying the need for and the uses of special
registers in the functioning of a processor.

(b) describe in simple terms the fetch/decode/execute/reset cycle and the effects of the stages
of the cycle on specific registers.

(c) discuss parallel processor systems, their uses, and their advantages and disadvantages.

3.4 Data Representation, Data Structures and Data Manipulation

Content

3.4.1 Number systems
3.4.2 Floating point binary
3.4.3 Normalisation of floating point binary numbers
3.4.4 Implementation of data structures, including linked lists, stacks, queues and trees
3.4.5 Searching and sorting

Learning Outcomes

Candidates should be able to:

(a) express numbers in binary coded decimal (BCD), octal and hexadecimal.

(b) describe and use two's complement and sign and magnitude to represent positive and
negative integers.

(c) perform integer binary arithmetic: addition and subtraction.

(d) demonstrate an understanding of floating point representation of a real binary number.

(e) normalise a floating point binary number.

(f) discuss the trade-off between accuracy and range when representing numbers in floating
point form.

(g) explain the difference between static and dynamic implementation of data structures,
highlighting the advantages and disadvantages of each.

(h) describe algorithms for the insertion and deletion of data items stored in linked-list, stack
and queue structures.

(i) describe the insertion of data items into a sorted binary tree structure.

(j) explain the difference between binary searching and serial searching, highlighting the
advantages and disadvantages of each.

(k) explain the difference between insertion sort and merge sort.

(l) describe algorithms for implementing insertion sort and merge sort methods.
(m) describe the use of a binary tree to sort data.

COMPUTING 9691 A/AS LEVEL 2006

 16

3.5 Programming Paradigms

Content

3.5.1 Types of languages and typical applications
3.5.2 Features of different types of language
3.5.3 Methods for defining syntax

Learning outcomes

Candidates should be able to:

(a) describe, with the aid of examples, the characteristics of a variety of programming
paradigms (low level, object-orientated, declarative and procedural.

(b) explain, with examples, the terms object-oriented, declarative and procedural as applied to
high-level languages.

(c) explain how functions, procedures and their related variables may be used to develop a
program in a structured way, using stepwise refinement.

(d) describe the use of parameters, local and global variables as standard programming
techniques.

(e) explain how a stack is used to handle procedure calling and parameter passing.

(f) discuss the concepts and, using examples, show an understanding of data encapsulation,
classes and derived classes, and inheritance when referring to object-oriented languages.

(g) discuss the concepts and, using examples, show an understanding of backtracking,
instantiation and satisfying goals when referring to declarative languages.

(h) explain the concepts of direct, indirect and indexed addressing of memory when referring to
low level languages.

(i) using examples, describe the nature and purpose of 3rd and 4th generation languages.

(j) explain the need for, and be able to apply, BNF (Backus-Naur form) and syntax diagrams.

Note: Candidates will not be expected to use any particular form to present algorithms, but should

be able to write procedural algorithms in some form.
Candidates will not be expected to write or interpret the meaning of simple segments of low
level language code.
A detailed knowledge of the syntax of programming languages is not required.

3.6 Databases

Content

3.6.1 Database design
3.6.2 Normalisation and data modelling
3.6.3 Methods and tools for analysing and implementing database design
3.6.4 Control of access to relational database elements

Learning outcomes

Candidates should be able to:

(a) describe flat files, network, hierarchical and relational databases.

(b) design a simple relational database to the third normal form (3NF), defining tables and
views of data.

(c) draw entity-relationship (E-R) diagrams to represent diagrammatically the data model.

(d) explain the advantages that using a relational database gives over flat files.

(e) define and explain the purpose of primary, secondary and foreign keys.

(f) explain the importance of varying the access allowed to database elements at different
times and for different categories of user.

(g) describe the structure of a data base management system (DMBS), including the function
and purpose of the data dictionary, data description language (DDL) and data manipulation
language (DML)

COMPUTING 9691 A/AS LEVEL 2006

 17

3.7 Use of Systems and Data

Content

3.7.1 The commercial value of data
3.7.2 The importance of standards
3.7.3 Communications and electronic commerce
3.7.4 Training
3.7.5 Effects of introducing systems

Learning outcomes

Candidates should be able to:

(a) identify data which has commercial value, explaining why such data has this value, and
discuss contemporary trends in the compilation and use of valuable databases.

(b) explain the advantages of standardisation and describe some areas of standardisation such
as file formats, ISDN, OSI model and its use together with communications protocols.

(c) describe ways in which computers aid communication, including voice mail, e-mail, digital
telephone system facilities, e-commerce over the internet, tele/videoconferencing and
electronic data interchange.

(d) identify situations in which the transmission of data, for example over the Internet, has
created or could create new opportunities for businesses and individuals, in particular
explaining how e-commerce works.

(e) identify and describe training and re-training requirements for a given situation.

(f) describe the substantial short-term and long-term changes, in patterns of work and in quality
of output, which occur as a result of introducing computing systems.

3.8 Systems Development, Implementation, Management and Applications

Content

3.8.1 Methodologies and software tools for system development
3.8.2 Application types and technical requirements
3.8.3 Choice of implementation approaches: direct, parallel, phased
3.8.4 Systems management and monitoring

Learning outcomes

Candidates should, within the context of a scenario, be able to:

(a) identify commonly used techniques and software tools (e.g. Gantt charts, critical path
analysis software and Entity Relationship diagrams) used in developing computer systems.

(b) describe how use of methodologies/techniques and software tools for developing computer
systems aid the systems analyst/designer and programmer in terms of the documentation,
step-by-step logical progression through tasks and cross-checking mechanisms.

(c) discuss the technical requirements of a system necessary to implement a range of different
computer applications, including hardware, operating systems, communications, interface
software, and other utility software.

(d) explain the need to provide appropriate response times for different applications and its
implications for hardware, software and data structures.

(e) select, plan and justify appropriate implementation approaches for a range of different
applications such as: parallel, phased, pilot, direct.

(f) discuss the implications of managing, monitoring and maintenance of systems, including the
need for up-to-date documentation, software audit, quality control and management and
hardware updates.

COMPUTING 9691 A/AS LEVEL 2006

 18

3.9 Simulation and Real-time Processing

Content

3.9.1 Applications of real-time computing
3.9.2 The feedback loop; input and output; sensors and actuators
3.9.3 The use of robots
3.9.4 Uses of simulation
3.9.5 Variation of parameters and conditions; time steps
3.9.6 Processing requirements
3.9.7 Advantages and limitations of simulations

Learning outcomes

Candidates should be able to:

(a) describe real-time applications.

(b) explain the use of sensors and actuators for visible, tactile, audible and other physical
signals.

(c) demonstrate an understanding of the use of robots in a variety of situations such as the
manufacturing process or hazardous environments.

(d) explain the reasons for simulation, such as to change time-scales and/or save costs and/or
avoid danger.

(e) explain the large processing requirements of some systems and hence recognise the need
for parallel architectures.

(f) discuss the advantages of simulation in testing the feasibility of a design.

3.10 Common Network Environments, Connectivity and Security Issues

Content

3.10.1 Data transmission
3.10.2 Network components
3.10.3 Use of networks to support hyperlinking systems such as the World Wide Web

(WWW)
3.10.4 Common network environments
3.10.5 Issues of confidentiality
3.10.6 Encryption and authentication techniques

Learning outcomes

Candidates should be able to:

(a) describe methods used to organise LANs and WANs, and typical rates of data transmission
associated with different topologies and methods.

(b) demonstrate awareness of different media for transmitting data and their carrying
capabilities.

(c) explain the different purposes of network components, including switches, routers, bridges
and modems.

(d) discuss common network environments, such as intranets, the Internet and other open
networks, their facilities, structure and ability to exchange information using appropriate
software and techniques.

(e) describe the purpose of hypertext linking, identifying the means by which it can be achieved
such as hotwords/links, buttons and hypertext mark up language (HTML).

(f) describe the basic features of mark up languages.

(g) describe the facilities provided by electronic mail systems: responding, filing, copying,
attaching, sending on and multiple recipients.

(h) discuss the problem of maintaining confidentiality of data on an open network and how to
address this problem.

(i) explain the need for encryption, authorisation and authentication techniques (candidates will
not be expected to know any specific method in detail).

COMPUTING 9691 A/AS LEVEL 2006

 19

SECTION 4: COMPUTING PROJECT

The project is a substantial piece of work requiring analysis and design over an extended period of
time, which is organised, evaluated and presented in a report.

Candidates choose, in conjunction with their teacher, a well-defined user-driven problem which
enables them to demonstrate their skills in Analysis, Design, Software Development, Testing,
Implementation, Documentation and Evaluation.

Projects should be chosen to demonstrate the integrative aspects of the work and should avoid
needless repetition of the demonstration of a given skill. Each candidate must submit a report on
their piece of work, supported by evidence of software development and testing.

The teacher marks the projects using the marking criteria in the Guidance on Marking Projects
section of this syllabus, after which moderation takes place according to CIE procedures.

4.1 Definition, Investigation and Analysis 11 Marks

Explanation of the problem to be solved, the user’s requirements and how they were obtained.
There should be a clear statement of requirements, agreed with the prospective user.

Content

4.1.1 Define a problem
4.1.2 Investigate the current system
4.1.3 Record findings
4.1.4 Analyse findings
4.1.5 Identify problems/inefficiencies with current system
4.1.6 Specify requirements: user, hardware, software

Learning outcomes

Candidates should be able to:

(a) define the nature of the problem to be solved.

(b) identify methods by which to investigate the problem: including questionnaires, observation
and structured interviews.

(c) record information/data and gather sample documents currently used.

(d) identify the current processes and current data structures.

(e) analyse the data and processes: candidates will be expected to use appropriate techniques
such as structure diagrams/data flow diagrams/system flowcharts to illustrate their analysis.

(f) specify inefficiencies and problems apparent from discussions with the user and the
analysis work that has been carried out.

(g) derive the user and information requirements of the system.

(h) specify the required hardware and give reasons for their choice.

(i) specify the required software and give reasons for their choice.

(j) develop and document a clear requirement specification.

4.2 Design 11 marks

Detailed system design including data structures, input-output format and processes involved.
There should be a clear design specification.

Content

4.2.1 Output design
4.2.2 Input design
4.2.3 Data structures/model
4.2.4 Process model

COMPUTING 9691 A/AS LEVEL 2006

 20

Learning Outcomes

Candidates should be able to:

(a) design and document report layouts, screen displays and/or other forms of output, drawing
up detailed models of the proposed interface.

(b) design and document data capture forms and/or screen layouts.

(c) design and document using appropriate techniques (for example, normalisation/E-R
models) the data structures necessary to solve the inefficiencies/problems indicated in the
requirements specification.

(d) design and document an algorithm/pseudocode/top-down diagram or other form of process
model.

4.3 Software Development, Testing and Implementation 18 Marks

A software solution and comprehensive test plan is developed from the design, which should show
that the system works with valid, invalid and extreme data (or, if it does not, under which
circumstances it fails.) The test plan should be clearly cross-referenced to provide evidence that
the system has been tested during development and implementation. User testing should be in
evidence.

Content

4.3.1 Software development
4.3.2 Test strategy/plan
4.3.3 Test data
4.3.4 Testing a software solution and planning for its implementation
4.3.5 User testing

Learning outcomes

Candidates should be able to:

(a) implement the proposed process model using a software package and/or programming
language.

(b) develop the data structures of the design using the appropriate features of a software
package and/or programming language.

(c) develop inputs/outputs using the features of a software package and/or programming
language.

(d) identify, develop and document a test strategy for the software solution.

(e) select suitable test data to carry out the test strategy.

(f) test the software solution, illustrating how the software solution evolves.

(g) produce detailed output from the testing, cross referencing as appropriate to the test plan.

(h) test the software solution with the user, providing documented evidence that the solution
works, and devise a strategy for its implementation.

4.4 Documentation 12 Marks

Content

4.4.1 Technical documentation
4.4.2 User guides

The Technical Manual should include an explanation of the structure of the design and the
solution. All the necessary information about the system that would allow someone else to
maintain and develop it should be included, for example, back up procedures/cycles, annotated
code/modules, data structures used and how they may be modified etc.

The User Manual should include step by step instructions for operating all aspects of the system,
including a means of dealing with any errors that may occur. As well as a guide, User
Documentation should include appropriate “Help” and messages within the software solution, or be
present in the form of a hypertext document.

COMPUTING 9691 A/AS LEVEL 2006

 21

Learning outcomes

Candidates should be able to:

(a) develop a detailed technical manual.

(b) develop a detailed user manual.

4.5 Evaluation 8 Marks

Discussion of the degree of success in meeting the original objectives as specified in the
requirements specification, ease of the use of the package, acceptability to the users (including
where possible a letter of acceptance from the user and reference to user testing results) and
desirable extensions.

Content

4.5.1 Evaluate results against the requirement specification

4.5.2 Evaluate user testing

4.5.3 Identify the good and bad points of the final system, including any limitations and
necessary extensions to the system

Learning outcomes

Candidates should be able to:

(a) evaluate the final system against the criteria described in the requirements specification.

(b) evaluate the users’ responses to testing the system.

(c) identify the good and bad points of the final system highlighting any limitations and
necessary extensions to the system, indicating how the extensions could be carried out.

COMPUTING 9691 A/AS LEVEL 2006

 22

Practical Programming Projects are assessed as follows:

Problem/Task identification [2 marks]

Program Design [6 marks]

Program Development [28 marks]

Testing [8 marks]

Implementation [6 marks]

(a) Problem/Task Identification [Total: 2 marks]

A candidate should not expect the Examiners to be familiar with the problem/task that has
been chosen. There should be a brief description of the problem/task and a clear statement
of the form of data input should be given together with the required output.

1 Outline of the problem to be solved.

2 Description of the problem to be solved including the data input and the desired
output.

(b) Program Design [Total: 6 marks]

A detailed program design (including diagrams as appropriate) should be produced.
Proposed record, file and data structures should be described. Design of input formats (with
examples of screen layouts) and output formats should be included here. A detailed
description of processes should also be included. The hardware requirements must be
stated.

1 - 2 Some vague discussion of what the program will do with a brief diagrammatic

representation.

3 - 4 There is an outline of a design specification, including mock ups of inputs and
outputs, process model described (including a diagram: structure diagram, data flow
diagram or system flowchart). However there is a lack of completeness with
omissions from the process model, inputs and outputs. Data structures have been
identified but there may be inadequate detail. Or there may be some errors or logical
inconsistencies, for example validation specified may be inadequate or field lengths
incorrect.

5 - 6 A detailed and complete design specification, which is logically correct. There are
also detailed written descriptions of any processes/modules and a clear, complete
definition of any data structures.

(c) Program Development [Total: 28 marks]

(i) Implementing the program [6 marks]

There is evidence that the program produces the desired results. The finished program
should relate clearly to the design work.

1 - 2 Program listings are provided in the form of printouts. The developed solution does

not fulfil the design specification. A teacher may award up to 2 marks if they have
been shown the system working satisfactorily and there is no hard evidence in the
project report.

3 – 4 Program listings are provided in the form of printouts. Data structures are illustrated
as part of the listings where appropriate, detailing their purpose. The developed
solution has logical flaws and is only slightly related to the design.

COMPUTING 9691 A/AS LEVEL 2006

 23

5 - 6 Program listings are provided in the form of printouts. Data structures are illustrated
as part of the listings where appropriate, detailing their purpose. There is a full set of
printouts showing input and output as well as data structures. The program is clearly
related to the design. All hardcopy is fully annotated and cross-referenced.

(ii) Using Good Programming Style [6 marks]

Program listings should be easily readable. There should be a ‘header’ identifying the
program that contains the program name, author, school or college, programming language
used, revision number, date and purpose. The program should be self-documenting. All
data declarations should have explanatory comments; identifiers should have meaningful
variable names; programs, functions and procedures should be clearly named, well
separated and fully commented; suitable indentation should be used to set out the
programming constructs used.

Program listings must contain all the code written by the candidate. If any library routines or
automatically generated code is included this must be clearly identified and not taken into
account for assessment purposes.

1 - 2 Program listings are not easily readable and have few comments or comments are

handwritten on the listing.

3 - 4 The program listing shows some attention to good style but not all elements are
included.

5 - 6 The program listing is easily readable and shows considerable attention to good style.

(iii) Programming Skills [16 marks]

Candidates must demonstrate their use of the following programming skills.

 arrays and/or records
 different data types
 selection

iteration
 procedures

functions
 searching techniques
 files

For each of the above skills:

1 mark for a valid use

1 mark for correct annotation within the code

(d) Testing [Total: 8 marks]

It is the responsibility of the candidates to produce evidence of their development work and
for producing a test plan for the system. It is vital to produce test cases and to show that
they work. To do this it is necessary, not only to have test data, but to know what the
expected results are with that data.
An attempt should be made to show that all parts of the program have been tested,
including those sections dealing with unexpected or invalid data as well as extreme cases.
Showing that many other cases of test data are likely to work - by including the outputs that
they produce - is another important feature. Evidence of testing is essential. Comments by
teachers and others are of value, but the test plan must be supported by evidence in the
report of a properly designed testing process. The examiner must be left in no doubt the
program actually works. This evidence may be in the form of hardcopy output (possibly
including screen dumps), photographs or VHS video.

1 - 2 A collection of hardcopy test run outputs with no test plan, or a test plan with no

hardcopy evidence may also be present. A teacher may award up to 2 marks if they
have been shown the program working satisfactorily and there is no hard evidence in
the project report.

COMPUTING 9691 A/AS LEVEL 2006

 24

3 – 4 There is little evidence of testing with a badly developed test plan with clear
omissions. There is no description of the relationship between the structure of the
development work and the testing in evidence.

5 - 7 The developed solution partially fulfils the design specification. There should be at
least eight different test runs together with a test plan and hardcopy evidence.
However, the test plan has omissions in it and/or not all cases have been tested.

8 A comprehensive test plan, with evidence of each test run is present in the report,
together with the expected output. The test plan should cover all aspects of the
programming designed to cover the topics in c (iii) and demonstrate their effective
use within the boundaries of the solution.

(e) Implementation [Total: 6 marks]

(i) Technical Documentation [4 marks]

Much of the documentation will have been produced as a by-product of design and
development work and also as part of writing up the report to date. The following should be
included: record, file and data structures used; data dictionary; data flow (or navigation
paths); annotated program listings; detailed flowcharts; details of the algorithms and
formulae used. These should be fully annotated since this is important for subsequent
development of the system. The specifications of the hardware and software on which the
system was developed should be included.
Since the contents in the technical documentation will differ from one project to another,
professional judgement as to what would be necessary for another analyst to maintain and
develop the program has to be made.

1 - 2 Some items are present with some annotation attempted.

3 One or two omissions, but the rest is present and annotation is used sensibly.

4 No major omissions, with all parts fully annotated.

(ii) Installation Instructions [2 marks]

Clear guidance, as friendly as possible, should be given to the user on how to install the
program ready for use.

1 Sensible instructions on how to install the program for use.

2 Comprehensive, well illustrated instructions on how to install the program for use.

COMPUTING 9691 A/AS LEVEL 2006

 25

Advanced GCE
Unit 9691/02: Practical Programming Project

Candidate Record Card

Please read the instructions printed overleaf before completing this form. One of these cover sheets,
suitably completed, should be attached to the assessed work of each candidate in the moderation sample.

Examination session June/November* *please delete as necessary Year 2 0 0

Centre name

Centre number

Candidate name Candidate number

Assessment Criterion Mark

Problem/Task Identification (max 2)

Program Design (max 6)

Program Development (max 28)

Testing (max 8)

Implementation (max 6)

Total (max 50)

Authentication by the teacher

I declare that, to the best of my knowledge, the work submitted is that of the candidate concerned. I have
attached details of any assistance given beyond that which is acceptable under the scheme of assessment.

Signature Date

COMPUTING 9691 A/AS LEVEL 2006

 26

INSTRUCTIONS FOR COMPLETION OF THIS FORM

1 One form should be used for each candidate.

2 Please ensure that the appropriate boxes at the top of the form are completed.

3 Enter the mark awarded for each Assessment Criterion in the appropriate box.

4 Add together the marks for the Assessment Criteria to give a total out of 50. Enter this total
in the relevant box.

5 Sign and date the form.

2
7

C
e
n
tr
e
 N
u
m
b
e
r

C
e
n
tr
e
 N
a
m
e

 C
a
n
d
id
a
te

N
u
m
b
e
r

C
a
n
d
id
a
te
 N
a
m
e

T
e
a
c
h
in
g

G
ro
u
p
/S
e
t

T
o
ta
l

M
a
rk

(m
a
x
 5
0
)

In
te
rn
a
lly
 M
o
d
e
ra
te
d

M
a
rk

(m
a
x
 5
0
)

 N
a
m
e
 o
f
te
a
c
h
e
r
c
o
m
p
le
ti
n
g
 t
h
is
 f
o
rm

S
ig
n
a
tu
re

D
a
te

N
a
m
e
 o
f
In
te
rn
a
l
m
o
d
e
ra
to
r

C
O
M
P
U
T
IN
G
 9
6
9
1
/0
2

C
o
u
rs
e
w
o
rk
 A
s
s
e
s
s
m
e
n
t
S
u
m
m
a
ry
 F
o
rm

A
/A
S
 L
e
v
e
l

 28

 29

The selection of the problem for which a computerised system is to be designed and implemented
is extremely important. It should be chosen by the candidate in consultation with the teacher, and
should always involve a user, ideally a ‘third party’ user.

It is important to stress that the candidate should endeavour to produce a system which is non-
trivial and which will solve a given problem sensibly within the constraints of resources available to
the candidate.

Since the computing project seeks to assess the systems analysis section of the specification in a
practical manner, candidates should not produce a system from their own limited knowledge of the
requirements of the system. The ‘third-party’ user has to be someone who is willing to be involved
in the project

• in the analysis of the problem, where the user’s requirements are obtained. This may take the
form of a recorded interview with the candidate.

• at the software development, testing and implementation stages, where the user is involved in
‘prototyping’.

• at the evaluation stage, where the user is involved in checking that the system is completed as
specified and, leading on from this, is then willing to write a letter of acceptance of the system,
including any criticisms of it.

In this way, candidates can be encouraged to look beyond school, or college, life into the
businesses and companies in the community of the surrounding area. The emphasis is on
analysing an existing system, and producing a computer-based solution to fit the needs of the
user.
At the end of the project, candidates should submit a concisely written and well-laid out report,
which should be word-processed.

The solution may be implemented using one or more of: a programming language, pre-written
modules or toolkits, applications software and programmable packages. Brief descriptions of any
programming languages or software packages used, together with reasons for their selection,
should be included in the report.
Where the solution has involved programming the candidate should:
Annotate listings
Explain each section of the program with appropriate algorithm descriptions, which should be
language independent
Define variables by name, type and function where appropriate
Define clearly and identify the purpose of subroutines and procedures.

Where the solution has been produced with a software package that has not involved
programming, the candidate should:
Explain each section of the solution with appropriate algorithm descriptions
Define the purpose and inter-relationship of modules within the system
Clearly annotate the results produced.

The projects should contain the title, a contents list, a description of and a justification of the
investigation, analysis, design and the methods used. Also an evaluation and a bibliography.
Pages should be clearly annotated with a footer containing the candidate name and the page
number.
Appropriate evidence of development, testing and implementation, such as screen dumps of
photographs of screen layouts and printouts, paper based user documentation and a letter from
the third party user to say that the system has been developed satisfactorily, must support the
report.
Candidates should not submit magnetic of optical media as supporting evidence.

The computing project may involve programming or the tailoring of generic software packages and
may also involve the choosing and installing of hardware. It is not intended that any method of
solution is better than another, merely that the solution must be one that suits the problem that is
being solved.

 30

Computing projects are assessed as follows:

Definition and Analysis [11 marks]

Design [11 marks]

Software Development, Testing and Implementation [18 marks]

Documentation [12 marks]

Evaluation [8 marks]

(a) Definition, Investigation and Analysis [Total: 11 marks]

(i) Definition - nature of the problem [3 marks]
A candidate should not expect the Examiners to be familiar with the theory and practice in
the area of the chosen system. There should be a brief description of the organisation (for
example, firm or business) involved and the current methods used in the chosen areas that
may form the basis of the project. A clear statement of the origins and form of data should
be given. At this stage the exact scope of the project may not be known and it may lead to
the arranging of an interview with the user.

1 Description of the organisation.

2 Description of the organisation and the methods currently used in the area of the
chosen project.

3 Full description of the organisation and methods currently in use in the area of the
chosen project, with a description of the origin of the data to be used and some
indication of the form that data takes.

(ii) Investigation and Analysis [8 marks]

This section is the ‘systems analysis’. The candidate should describe how the user
requirements were ascertained (possibly by long discussions with the users: question and
answer sessions should be recorded and outcomes agreed). A clear requirements
specification should be defined. Alternative outline solutions should be discussed and
evaluated against one another.

1 - 2 Some elements have been discussed but little or no user involvement.

3 - 4 Some evidence that an attempt has been made to interview the user and some
recording of it has been made. An attempt has been made to develop a requirement
specification based on the information collected.

5 - 6 Good user involvement and recording of the interview(s). Most of the necessary
items have been covered including a detailed discussion of alternative approaches. A
requirements specification based on the information collected is present but with
some omissions.

7 - 8 Excellent user involvement with detailed recording of the user’s requirements.
Alternative approaches have been discussed in depth. The report demonstrates a
thorough analysis of the system to be computerised. A detailed requirements
specification based on the information collected has been produced.

(b) Design [Total: 11 marks]

(i) Nature of the solution [7 marks]

A detailed systems design (including diagrams as appropriate) should be produced and
agreed with the users. Proposed record, file and data structures should be described and
design limitations should be included. Design of data capture forms, input formats (with
examples of screen layouts) and output formats should be included here where relevant. A
detailed summary of the aims and objectives should also be included. These items are the
design specifications, which should be agreed with the user.

 31

1 - 2 Some vague discussion of what the system will do with a brief diagrammatic
representation of the new system.

3 - 4 The major objectives of the new system have been adequately summarised, but
omissions have been made. There is a brief outline of a design specification,
including mock ups of inputs and outputs, process model described (including a
diagram: structure diagram, data flow diagram or system flowchart). However there is
a lack of completeness with omissions from the process model, inputs and outputs.
Data structures have been identified but there may be inadequate detail.

5 - 6 A clear set of objectives have been defined and a full design specification is included
but there may be some errors or logical inconsistencies, for example validation
specified may be inadequate or field lengths incorrect. There is clear evidence that a
response to the design has been obtained from the end-user, and any comments
have been acted upon.

7 A clear set of objectives with a detailed and complete design specification, which is
logically correct. There are also detailed written descriptions of any
processes/modules and a clear, complete definition of any data structures. The
specification is sufficient for someone to pick up and develop an end result using the
software and hardware specified in the requirements specification.

(ii) Intended benefits [2 marks]

There should be some discussion of the relative merits of the intended system and of the
previous mode of operation. This may include any degree of generality beyond the original
scope of the system.

1 One valid benefit of the new system has been identified and explained.

2 The benefits of the new system have been comprehensively described.

(iii) Limits of the scope of the solution [2 marks]

This may include volume (sizing limitations) and limitations of the facilities used. For full
marks there must be some estimate of the size of the files required for the implemented
system.

1 A discussion of what the system limitations are.

2 A detailed description of the system limitations has been given, including the estimate
of the size of the files required for the implemented system.

(c) Software Development, Testing and Implementation [Total: 18 marks]

(i) Development and Testing [9 marks]

A technical description of how the solution relates to the design specification produced and
agreed with the user should be included. It is the responsibility of the candidates to produce
evidence of their development work and for producing a test plan for the system. It is vital to
produce test cases and to show that they work. To do this, it is necessary not only to have
test data, but to know what the expected results are with that data.
An attempt should be made to show that all parts of the system have been tested, including
those sections dealing with unexpected or invalid data as well as extreme cases. Showing
that many other cases of test data are likely to work - by including the outputs that they
produce - is another important feature. Evidence of testing is essential. Comments by
teachers and others are of value, but the test plan must be supported by evidence in the
report of a properly designed testing process. The examiner must be left in no doubt the
system actually works in the target environment. This evidence may be in the form of
hardcopy output (possibly including screen dumps), photographs or VHS video.

1 - 2 Program listings or evidence of tailoring of a software package is provided in the form

of printouts but with no annotation or relationship to a test plan or test run. The
developed solution does not fulfil the design specification. A collection of hardcopy
test run outputs with no test plan, or a test plan with no hardcopy evidence may also
be present. A teacher may award up to 2 marks if they have been shown the system
working satisfactorily and there is no hard evidence in the project report.

 32

3 – 4 Program listings or evidence of tailored software packages are provided in the form of
printouts. Data structures are illustrated as part of the listings where appropriate,
detailing their purpose. There is some annotation evident to illustrate how the
package was tailored for a particular purpose or to indicate the purpose of sections of
code in a program listing. The developed solution has logical flaws and does not fulfil
the design specification. There is little evidence of testing with a badly developed test
plan with clear omissions. There is no description of the relationship between the
structure of the development work and the testing in evidence.

5 - 7 Program listings or evidence of tailored software packages are provided in the form of
printouts. Data structures are illustrated as part of the listings where appropriate,
detailing their purpose. There is some annotation evident to illustrate how the
package was tailored for a particular purpose or to indicate the purpose of sections of
code in a program listing. The developed solution partially fulfils the design
specification. There should be at least eight different test runs together with a test
plan and hardcopy evidence. However, the test plan has omissions in it and/or not all
cases have been tested.

8 - 9 Program listings or evidence of tailored software packages are provided in the form of
printouts. Data structures are illustrated as part of the listings where appropriate,
detailing their purpose. There is a full set of printouts showing input and output as well
as data structures. All hardcopy is fully annotated and cross-referenced. A
comprehensive test plan, with evidence of each test run is present in the report,
together with the expected output. The test plan should cover as many different
paths through the system as is feasible, including valid, invalid and extreme cases.
Marks may be lost for lack of evidence of a particular test run or lack of expected
results.

(ii) Implementation [6 marks]

It is recognised that the user organisation (preferably ‘third party’) may not fully implement
the system, although this is the ultimate aim. However, to score any marks in this section
there must be some evidence that the person for whom the system was written has seen
the system in operation. This can be done in a number of ways: such as by inviting the user
to see the product and allowing the candidate to demonstrate the system, or by taking the
system to the user involved. There should be an implementation plan written, including
details of system changeover, training required and details of user testing.

1 - 2 Details of system changeover have been documented with some recognition that the

user(s) will require training. Some evidence of user testing is given, usually by
questionnaire or written comments by fellow students or others who were not directly
involved in the development of the system.

3 - 4 A good implementation plan with details of training required. There is written evidence
available from the third party user indicating that they have seen the system in
operation.

5 -6 A clear and detailed implementation plan, including detailed stages of user testing. All
aspects of user testing, user acceptance, implementation and system changeover
have been documented. There is written evidence available from the user that they
have used the system and agree with the strategy for implementation.

(iii) Appropriateness of structure and exploitation of available facilities [3 marks]

Some discussion of the suitability of methods and any product (e.g., hardware or software)
used for the particular system should be included. Some recognition and discussion of the
problems encountered and actions taken when appropriate should also be included. A log
of such problems should be kept.

1 Some attempt at discussing the suitability of the hardware and software.

2 In addition, an informative diary, or log, of problems encountered has been kept.

3 A complete discussion of the hardware and software available and how they were
suitable in solving the given problem, together with a good, informative explanation of
the problems encountered and how they were overcome.

 33

(d) Documentation [Total: 12 marks]

(i) Technical Documentation [6 marks]

Much of the documentation will have been produced as a by-product of design and
development work and also as part of writing up the report to date. However a technical
guide is a stand-alone document produced to facilitate easy maintenance and upgrade of a
system. The contents of the guide should, where relevant, include the following: record, file
and data structures used; database modelling and organisation including relationships,
screens, reports and menus; data dictionary; data flow (or navigation paths); annotated
program listings; detailed flowcharts; details of the algorithms and formulae used. All parts
of the guide should be fully annotated since this is important for subsequent development of
the system. The specifications of the hardware and software on which the system can be
implemented should be included.
Since the system in the technical guide will differ from one project to another, professional
judgement as to what would be necessary for another analyst to maintain and develop the
system has to be made.

1 - 2 Some items are present with some annotation attempted.

3 - 4 One or two omissions, but the rest is present and annotation is used sensibly.

5 - 6 No major omissions, with all parts fully annotated. For full marks the guide should be
well presented rather than just a collection of items.

(ii) User [6 marks]

Clear guidance, as friendly as possible, should be given to the user for all operations that
they would be required to perform. These would include input format with screens displays,
print options, back-ups (file integrity routines), security of access to data and a guide to
common errors that may occur. (Note the candidate would not be required to copy out large
volumes of any underlying software’s user guide, but to produce a non-technical and easy to
follow guide for someone with little computer knowledge). Some mention here of the
relationship between items of software and the data they deal with may be relevant.

The user guide should be well presented with an index and, where necessary, a glossary of
the terms used. Alternatively, an electronic guide could be based around hypertext links
(screen dumps will be required).

1 - 2 An incomplete guide, perhaps with no screen displays. Some options briefly

described but difficult for the user to follow.

3 - 4 All but one or two options fully described (for example, back-up routines not
mentioned). In the main the options are easy for the user to follow with screen
displays.

5 - 6 A full user guide with all options described well presented (possibly as booklet) with
an index and a glossary. No omission of any of the options available (including back-
up routines, guide to common errors). Marks may be lost for inadequate descriptions
of some options. For full marks, good on-screen help should exist where this is a
sensible option.

(e) Evaluation [Total: 8 marks]

(i) Discussion of the degree of success in meeting the original objectives. [3 marks]

This discussion should demonstrate the candidate’s ability to evaluate the effectiveness of
the completed system. The original objectives stated in requirements specification should
be matched to the achievements, taking into account the limitations. User evaluation is also
essential and should arise from a questionnaire or, preferably, direct user evaluation. For
full marks it is important that the user provides sets of data as they are likely to occur in
practice, and that the results arising from such data be given. This data is typical data
rather than test data and it may show up faults or problems that the candidate’s own test
data failed to find.

 34

1 Some discussion about the success, or otherwise, of the work, but with no reference
to the specification set out in (a) (ii).

2 Some discussion about a number of the objectives set out in (a) (ii), but some
omissions or inadequate explanation of success or failure.

3 A full discussion, taking each objective mentioned in (a) (ii) and explaining the degree
of success in meeting them, indicating where in the project evidence can be found to
support this or giving reasons why they were not met.

(ii) Evaluate the users’ response to the system [3 marks]

It is important that the user is not assumed to be an expert in computer jargon, so some
effort must be made to ensure that the system is user-friendly. It will be assumed that the
user will have considerable knowledge of the underlying theory of the business being
computerised. Clarity of menus, clear on-screen help and easy methods of inputting data
are all examples of how the system can be made user-friendly. Here marks are awarded for
the degree of satisfaction that the user indicates in the acceptance procedure. Could the
system or its results be used? Was the system specification achieved? Do any system
faults still exist? The candidate should evaluate the users’ response to the final version of
the system.
It is important that the user becomes an active participant in this section and that user
responses are reported.

1 Some effort has been made to make the system user-friendly, but the user still has

difficulty using the system.

2 The system is, in the main, user-friendly, but there is room for improvement (e.g., no
on-screen help has been provided). The user indicates that the system could be used
but there are some faults, which need to be rectified.

3 A fully user-friendly system has been produced. The user indicates that the system
fully meets the specification given in section (a), and there are no known faults in the
system.

(iii) Desirable extensions [2 marks]

As a result of completing the system, the candidate should identify the good and bad points
of the final system highlighting any limitations and necessary extensions to the system,
indicating how the extensions could be carried out.

The candidate identifies clearly good and bad points and any limitations.
The candidate clearly portrays the good and bad points of the system indicating the
limitations, possible extensions and how to carry out the extensions.

 35

Advanced GCE
Unit 9691/04: Computing Project

Candidate Record Card

Please read the instructions printed overleaf before completing this form. One of these cover sheets,
suitably completed, should be attached to the assessed work of each candidate in the moderation sample.

Examination session June/November* *please delete as necessary Year 2 0 0

Centre name

Centre number

Candidate name Candidate number

Assessment Criterion Mark

Definition and Analysis (max 11)

Design (max 11)

Software Development, Testing and Implementation
(max 18)

Documentation (max 12)

Evaluation (max 8)

Total (max 60)

Authentication by the teacher

I declare that, to the best of my knowledge, the work submitted is that of the candidate concerned. I have
attached details of any assistance given beyond that which is acceptable under the scheme of assessment.

Signature Date

 36

INSTRUCTIONS FOR COMPLETION OF THIS FORM

1 One form should be used for each candidate.

2 Please ensure that the appropriate boxes at the top of the form are completed.

3 Enter the mark awarded for each Assessment Criterion in the appropriate box.

4 Add together the marks for the Assessment Criteria to give a total out of 60. Enter this total in the

 relevant box.

5 Sign and date the form.

3
7

C
e
n
tr
e
 N
u
m
b
e
r

C
e
n
tr
e
 N
a
m
e

 C
a
n
d
id
a
te

N
u
m
b
e
r

C
a
n
d
id
a
te
 N
a
m
e

T
e
a
c
h
in
g

G
ro
u
p
/S
e
t

T
o
ta
l

M
a
rk

(m
a
x
 6
0
)

In
te
rn
a
lly
 M
o
d
e
ra
te
d

M
a
rk

(m
a
x
 6
0
)

 N
a
m
e
 o
f
te
a
c
h
e
r
c
o
m
p
le
ti
n
g
 t
h
is
 f
o
rm

S
ig
n
a
tu
re

D
a
te

N
a
m
e
 o
f
In
te
rn
a
l
m
o
d
e
ra
to
r

C
O
M
P
U
T
IN
G
 9
6
9
1
/0
4

C
o
u
rs
e
w
o
rk
 A
s
s
e
s
s
m
e
n
t
S
u
m
m
a
ry
 F
o
rm

A
/A
S
 L
e
v
e
l

