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1 (a) (i) 66 [1] 
 
  (ii) error [1] 
 
  (iii) 'C' (accept without quotes) [1] 
 
 
 (b) Letter15 � CHAR(ASCII('A') + 14) [2] 

 
  Completely correct – 2 marks 
  Single error of (not 14) scores 1 mark 
 
 

 (c) (i) • letter A-Z have increasing ASCII codes 

• the ASCII values of the two characters are compared 

• the character with the smaller value is the first character / the character with the 
larger value is the second character [2] 

 

  (ii) • ASCII codes of the characters are compared in turn … 

• from left hand side / start of each word 

• … until two characters are different 

• the lower code value determines the first word 

• if 2 words are the same when one ends … 

• … this is the first word  [4] 
 
  (iii) Mark as follows: 

• Function header (ignore data type) & termination 

• Data types for parameter and return value 

• Change letter to ASCII 

• Add 32 

• Change ASCII code to letter 

• Return value 
 
   Example pseudocode 
   FUNCTION LowerCase(Letter : CHARACTER) RETURNS CHARACTER 

    DECLARE LetterCode : INTEGER 

    LetterCode � ASCII(Letter) + 32 

    Letter � CHAR(LetterCode) 

    RETURN Letter 

   ENDFUNCTION [6] 

 
 
2 (i) "01072015" [1] 
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 (ii)  

  
 
1 mark for each box except 2/7 are 1 mark for both. [8] 
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 (iii) Five dates to cover the following cases: 

• Birth month before current month 

• Birth month after current month 

• Birth month equal to current month + birth day before current day 

• Birth month equal to current month + birth day after current day 

• Birth month equal to current month + birth day equal to current day [5] 
 
 
3 (a) (i) Mark as follows: 

• correct index range 

• correct data type 
 
   Example Pascal: 
 
   VAR Letters : ARRAY[0..25] OF INTEGER; [2] 

 
  (ii) 0 

   Do not accept "0" [1] 
 

  (iii) Mark as follows: 

• correct loop from 0 to 25 (accept REPEAT or WHILE loops that work) 

• assignment of initial value to array element (allow ft from part (ii)) 
 
   Example Pascal 
 
   FOR i := 0 TO 25 DO 

      Letters[i] := 0; [2] 

 
 

 (b) (i) WHILE NOT EOF(MessageText) 
 ::  

// calculate index using ASCII function from Question 1 

 Index � ASCII(NextLetter) – ASCII('A') 

  // increment relevant frequency total in Letters array 

 Letters[Index] � Letters[Index] + 1 [3] 

 

  (ii) • returns a Boolean value  

• checks whether it reached a marker written to the file …  

• immediately after the last character  [max 2] 
(No marks for “End Of File” ) 
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 (c) (i) Mark as follows:  

• parameter 

• returns data type 

• declaration of local variable(s) 

• Initialisation(s) 

• loop 

• Boolean statement 

• updating of largest so far 

• store index of where largest so far was found 

• return index of most frequent letter 
 

Example answer: 
FUNCTION MostFrequentLetterIndex(Letters : ARRAY OF INTEGER)  

  RETURNS INTEGER 

 DECLARE Index : INTEGER 

 DECLARE LargestSoFar : INTEGER 

 DECLARE i : INTEGER 

 LargestSoFar � 0 

 Index � -1    // reject a value within 0 to 25 

 FOR i � 0 TO 25 

 IF Letters[i] > LargestSoFar 

  THEN 

 LargestSoFar � Letters[i] 

 Index � i 

 ENDIF 

 ENDFOR 

 RETURN Index 

ENDFUNCTION [max 8] 

 
  (ii) MostFrequentLetter � CHAR(MostFrequentLetterIndex() + 65) [1] 

 
  (iii) Displacement � ASCII(MostFrequentLetter) – ASCII('E') [1] 

 
 
 (d) (i)  

x y z w OUTPUT 

"E" 69 72 "H" "H" 

"B" 66 69 "E" "E" 

"I" 73 76 "L" "L" 

"M" 77 80 "P" "P" 

     

 
   1 mark per column (first three) – 1 mark last two columns [4] 
 
  (ii) Converts an encrypted message into plain text [1] 
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  (iii) Any one from: 

• Annotation / comments 

• Keywords in capitals [1] 
 
  (iv) Meaningful variable names 
   Indentation [2] 
 
 
 (e) (i) Any example of a syntax error such as: 

mis-spelling of keyword 
mismatched brackets [1] 

 
  (ii) syntax error 
   When: during compilation // during code entry into Integrated Development Environment 
   How: translator diagnostics / compiler error messages // IDE highlights error [2] 
 
  (iii) (The logic of) the method of solution was not correct 
   Or by example [1] 
 
  (iv) logic error 
   When: during testing / execution 
   How: when expected results don’t match actual results [2] 
 
 
 (f) (i) 03 FOR i � 0 TO 25 

   04 Used[i] � FALSE [2] 

 
  (ii) 06 FUNCTION RandomCode () RETURNS INTEGER 

07 REPEAT 

08 Code � Random(25) 

09 UNTIL Used[Code] = FALSE  

10 Used[Code] � TRUE 

11 RETURN Code 

12 ENDFUNCTION [4] 

 
  (iii) 13 // main program 

14 // calculate and store unique random letters  

15 // in second column of array LetterGrid 

16 FOR i � 0 TO 25 

17 LetterGrid[i,2] � CHAR(65 + RandomCode()) 

18 ENDFOR [2] 

 

  (iv) • check contents of LetterGrid array 

• every letter is there exactly once in second column [2] 
 




