
® IGCSE is the registered trademark of Cambridge International Examinations.

CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the May/June 2015 series

9691 COMPUTING

9691/21 Paper 2 (Written Paper), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of
the examination. It shows the basis on which Examiners were instructed to award marks. It does not
indicate the details of the discussions that took place at an Examiners’ meeting before marking began,
which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner
Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most
Cambridge IGCSE

®
, Cambridge International A and AS Level components and some

Cambridge O Level components.

www.XtremePapers.com

Page 2 Mark Scheme Syllabus Paper

 Cambridge International AS/A Level – May/June 2015 9691 21

© Cambridge International Examinations 2015

1 (a) (i) 66 [1]

 (ii) error [1]

 (iii) 'C' (accept without quotes) [1]

 (b) Letter15 � CHAR(ASCII('A') + 14) [2]

 Completely correct – 2 marks
 Single error of (not 14) scores 1 mark

 (c) (i) • letter A-Z have increasing ASCII codes

• the ASCII values of the two characters are compared

• the character with the smaller value is the first character / the character with the
larger value is the second character [2]

 (ii) • ASCII codes of the characters are compared in turn …

• from left hand side / start of each word

• … until two characters are different

• the lower code value determines the first word

• if 2 words are the same when one ends …

• … this is the first word [4]

 (iii) Mark as follows:

• Function header (ignore data type) & termination

• Data types for parameter and return value

• Change letter to ASCII

• Add 32

• Change ASCII code to letter

• Return value

 Example pseudocode
 FUNCTION LowerCase(Letter : CHARACTER) RETURNS CHARACTER

 DECLARE LetterCode : INTEGER

 LetterCode � ASCII(Letter) + 32

 Letter � CHAR(LetterCode)

 RETURN Letter

 ENDFUNCTION [6]

2 (i) "01072015" [1]

Page 3 Mark Scheme Syllabus Paper

 Cambridge International AS/A Level – May/June 2015 9691 21

© Cambridge International Examinations 2015

 (ii)

1 mark for each box except 2/7 are 1 mark for both. [8]

Page 4 Mark Scheme Syllabus Paper

 Cambridge International AS/A Level – May/June 2015 9691 21

© Cambridge International Examinations 2015

 (iii) Five dates to cover the following cases:

• Birth month before current month

• Birth month after current month

• Birth month equal to current month + birth day before current day

• Birth month equal to current month + birth day after current day

• Birth month equal to current month + birth day equal to current day [5]

3 (a) (i) Mark as follows:

• correct index range

• correct data type

 Example Pascal:

 VAR Letters : ARRAY[0..25] OF INTEGER; [2]

 (ii) 0

 Do not accept "0" [1]

 (iii) Mark as follows:

• correct loop from 0 to 25 (accept REPEAT or WHILE loops that work)

• assignment of initial value to array element (allow ft from part (ii))

 Example Pascal

 FOR i := 0 TO 25 DO

 Letters[i] := 0; [2]

 (b) (i) WHILE NOT EOF(MessageText)
 ::

// calculate index using ASCII function from Question 1

 Index � ASCII(NextLetter) – ASCII('A')

 // increment relevant frequency total in Letters array

 Letters[Index] � Letters[Index] + 1 [3]

 (ii) • returns a Boolean value

• checks whether it reached a marker written to the file …

• immediately after the last character [max 2]
(No marks for “End Of File”)

Page 5 Mark Scheme Syllabus Paper

 Cambridge International AS/A Level – May/June 2015 9691 21

© Cambridge International Examinations 2015

 (c) (i) Mark as follows:

• parameter

• returns data type

• declaration of local variable(s)

• Initialisation(s)

• loop

• Boolean statement

• updating of largest so far

• store index of where largest so far was found

• return index of most frequent letter

Example answer:
FUNCTION MostFrequentLetterIndex(Letters : ARRAY OF INTEGER)

 RETURNS INTEGER

 DECLARE Index : INTEGER

 DECLARE LargestSoFar : INTEGER

 DECLARE i : INTEGER

 LargestSoFar � 0

 Index � -1 // reject a value within 0 to 25

 FOR i � 0 TO 25

 IF Letters[i] > LargestSoFar

 THEN

 LargestSoFar � Letters[i]

 Index � i

 ENDIF

 ENDFOR

 RETURN Index

ENDFUNCTION [max 8]

 (ii) MostFrequentLetter � CHAR(MostFrequentLetterIndex() + 65) [1]

 (iii) Displacement � ASCII(MostFrequentLetter) – ASCII('E') [1]

 (d) (i)

x y z w OUTPUT

"E" 69 72 "H" "H"

"B" 66 69 "E" "E"

"I" 73 76 "L" "L"

"M" 77 80 "P" "P"

 1 mark per column (first three) – 1 mark last two columns [4]

 (ii) Converts an encrypted message into plain text [1]

Page 6 Mark Scheme Syllabus Paper

 Cambridge International AS/A Level – May/June 2015 9691 21

© Cambridge International Examinations 2015

 (iii) Any one from:

• Annotation / comments

• Keywords in capitals [1]

 (iv) Meaningful variable names
 Indentation [2]

 (e) (i) Any example of a syntax error such as:

mis-spelling of keyword
mismatched brackets [1]

 (ii) syntax error
 When: during compilation // during code entry into Integrated Development Environment
 How: translator diagnostics / compiler error messages // IDE highlights error [2]

 (iii) (The logic of) the method of solution was not correct
 Or by example [1]

 (iv) logic error
 When: during testing / execution
 How: when expected results don’t match actual results [2]

 (f) (i) 03 FOR i � 0 TO 25

 04 Used[i] � FALSE [2]

 (ii) 06 FUNCTION RandomCode () RETURNS INTEGER

07 REPEAT

08 Code � Random(25)

09 UNTIL Used[Code] = FALSE

10 Used[Code] � TRUE

11 RETURN Code

12 ENDFUNCTION [4]

 (iii) 13 // main program

14 // calculate and store unique random letters

15 // in second column of array LetterGrid

16 FOR i � 0 TO 25

17 LetterGrid[i,2] � CHAR(65 + RandomCode())

18 ENDFOR [2]

 (iv) • check contents of LetterGrid array

• every letter is there exactly once in second column [2]

