MARK SCHEME for the October/November 2014 series

9691 COMPUTING

9691/21
Paper 2 (Written Paper), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9691	21

1 (a) DIM Tally[1 : 4] OF INTEGER
1 mark for size
1 mark for data type (must be integer)
(b) (i) PROCEDURE InitialiseArrayCounts

DECLARE i : INTEGER
FOR i $\leftarrow 1$ TO 4
Tally[i] $\leftarrow 0$
ENDFOR
ENDPROCEDURE
1 mark for declaration/local variable
1 mark for loop 1 to 4
1 mark for array element set to 0
PROCEDURE InputStudentChoices
REPEAT
INPUT Choice
Tally[Choice] \leqslant Tally[Choice] +1
UNTIL Choice $=0$
ENDPROCEDURE
1 mark for replacing CASE statement with single array element assignment
(ii) Football

Accept f.t. from (b)(i) (if array elements not numbered 1 to 4)
(c) PROCEDURE OutputTallyChart

OUTPUT "1 Cricket "
OutputTally(Tally[1])
OUTPUT "2 Football "
OutputTally(Tally[2])
OUTPUT "3 Tennis "
OutputTally(Tally[3])
OUTPUT "4 Swimming "
OutputTally(Tally[4])
ENDPROCEDURE
2 marks for all 4 array elements correct. 1 mark for 3 correct.

```
PROCEDURE OutputTally(SportCount : INTEGER)
    IF SportCount > 0 // 1 mark
        THEN
            FOR i < 1 TO SportCount // 1 mark
                OUTPUT '\'
            ENDFOR // 1 mark
    ENDIF
    OUTPUT NEWLINE //1 mark
ENDPROCEDURE
```

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9691	21

(d)

Type of test data	Example test data	Justification
Normal	e.g. 1 or greater	Check correct number of bars output
Boundary	0	O is smallest possible value And no bars should be output
Extreme	e.g. 2000	How is the procedure going to deal with a large number, more than bars fit on a line

1 mark for each cell
(e) (i) - indentation

- meaningful identifiers
- initialising variables
- annotation
- parameters
- capitalisation of keywords
- modular structure
(ii) - declaring variables/constants
- local variables

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9691	21

2 (a)

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9691	21

(b) FUNCTION FindPassword(ThisUserID : STRING) RETURNS STRING
// 1 mark
DECLARE Found : BOOLEAN
OPENFILE FOR INPUT
Found \leftarrow FALSE
WHILE NOT EOF AND Found = FALSE // 2 marks
FILEREAD next record
IF UserID = ThisUserID // 1 mark
THEN

```
Found \(\leftarrow\) TRUE
// 1 mark
```

ENDIF
ENDWHILE
IF Found = TRUE // 1 mark
THEN
RETURN EncryptedPassword // 1 mark ELSE RETURN Error code // 1 mark
ENDIF
CLOSEFILE
ENDFUNCTION

```
Alternative part:
IF Found = False // 1 mark
    THEN
        RETURN Error code // 1 mark
    ELSE
        RETURN EncryptedPassword // 1 mark
    ENDIF
```

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9691	21

3 (a) (i) Mark as follows:
1 mark for a heading
1 mark for input boxes with units
1 mark for text output box with description
1 mark for button "calculate" or similar
Accept console mode design
(ii) 1 mark for explanation that fits design of (a)(i).
(b) (RoomWidth >=100) AND (RoomWidth < 1000)

1 mark for each bracketed part
1 mark for AND
(c) (i) 3
(ii) RoomWidth MOD 30 > 0 // RoomWidth MOD 30 != 0
(iii) e.g. Pascal

```
TilesForWidth := RoomWidth DIV 30;
IF RoomWidth MOD 30 > 0
    THEN TilesForWidth := TilesForWidth + 1;
TilesForLength := RoomLength DIV 30;
IF RoomLength MOD 30 > 0
    THEN TilesForLength := TilesForLength + 1;
TilesRequired := TilesForWidth * TilesForLength * 1.1; // +10%
```

1 mark for calculating tiles for length
1 mark for calculating tiles for width
1 mark for rounding up when needed
1 mark for multiplying TilesForWidth and TilesForLength
1 mark for adding 10\% of total tiles required

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9691	21

4 (a) (i) for example: $0 \&-1 / /$ TRUE \& FALSE // ' O ' \& ' X '
(ii) e.g. Pascal

VAR FloorDesign: ARRAY[1..35, 1..35] OF CHAR; //2 marks
(1 mark for correct dimensions, 1 mark for data type to match assignment below)
FOR i := 1 TO 35 DO // 1 mark FOR j := 1 TO 35 DO // 1 mark FloorDesign[i,j] := 'O'; // 1 mark
(b) NumberOFWhiteTiles $\leftarrow 0$

NumberOfColourTiles $\leftarrow 0$
FOR a $\leftarrow 1$ TO 15 FOR b $\leftarrow 1$ TO 10

IF FloorDesign[a,b] = 'X' THEN

NumberOfColourTiles \leftarrow NumberOfColourTiles + 1 ELSE

NumberOfWhiteTiles \leqslant NumberOfWhiteTiles + 1 ENDIF ENDFOR
ENDFOR
Mark as follows:
1 mark for initialisation
1 mark for loops with correct ranges
1 mark for correct nesting
1 mark for testing array element
1 mark for updating count of coloured tiles
1 mark for calculating number of white tiles (counting or subtracting)

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2014	9691	21

5 (a)

a	\mathbf{x}	a $>=\mathrm{x}$
13		
	8	
		TRUE
5		
	4	
		TRUE
1		
	2	
		FALSE
	1	
		TRUE
0		
	0.5	

Output: 1101
1 mark for each correct column
1 mark for correct output, in this order.
(b) converts denary number to binary // converts 13 to binary

