MARK SCHEME for the October/November 2013 series

9691 COMPUTING

9691/32

Paper 3 (Written Paper), maximum raw mark 90

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2013	9691	32

1 (a) (i) $x y-5 /$
(ii) $2 \frac{4 \mathrm{a} * 1}{1}+1$
$2^{\text {nd }}$ mark for completely correct
(b) Evidence for 12 or 6

Answer 2
(c) (i) In-order traversal // (traverse each subtree in) the order left-root-right
(ii) $12 / b * h *$
(iii) Post(-order) traversal // (Traverse/visit each subtree in) the order left-right-root
[Total: 8]

2 (a) Security is improved/better managed
Different users can have different 'views' of/access to data
Program-data independence
// Changing a field does not require an applications program re-write
Queries and reports quickly produced
Reduced data duplication/ repetition/redundancy
Reduced data inconsistencies
Better managed /or similar data integrity/data validation // Validation code does not need to be present in all applications programs
If implemented with a DBMS it will allow concurrent access to the database
(b) (i) Many product can be supplied by one supplier // many-to-one // M:1
(ii) Many products appear on many orders // many-to-many // M:M
(c) (i)

Intermediate table (not labelled PRODUCT, ORDER, etc.)
2 X one-to-many relationship
(ii) Primary key of PRODUCT/Primary key ProductID // Primary key of ORDER

Is used as a foreign key in the link table

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2013	9691	32

(d) (i) (Yes) since there is a not a repeated group of attributes
(ii) (Yes) since there is only a single attribute primary key // there are no partial dependencies // all non-key attr. are dependent on the primary key
(iii) There are dependent non-key attributes //

SupplierName and/or SupplierTelNo are dependent on SupplierID
(iv) PRODUCT(ProductID, ProductDescription, RetailPrice, SupplierID)

SUPPLIER(SupplierID, SupplierName, SupplierTelNumber)
If primary key not-indicated penalise once only
(e) Avoids data duplication/avoids repeated data // reduces data redundancy

Avoids data inconsistencies
Ensures data integrity
(f) SELECT CustomerID, OrderNo

FROM ORDER
WHERE OrderDate $=$ \#15/01/2014\# AND PaymentMethod = ' D'
(AND ISPaid $=$ TRUE)
Do not penalise imprecise syntax in the WHERE line
[Total: 19]

3 (a) Temporary storage location
general purpose/special (purpose)
Inside the (micro)processor
(b) (i) 3 C
(ii) 271
(iii) Fewer digits used to represent any number // long string difficult to interpret

Less likely to make a mistake when copying/converting a digit string
Easy to convert from binary to hex (vice versa) than binary to denary
R. Hex is easier to understand/write

Page 4	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2013	9691	32

(c) (i) 2 bytes
(ii) The Program Counter contains 30

MAR $\leftarrow[P C] \quad / /$ MAR given the contents of the PC
$\mathrm{PC} \leftarrow[\mathrm{PC}]+1 / / \mathrm{PC}$ is incremented
MDR $\leftarrow[$ [MAR]] // The contents of the address in MAR is copied to MDR
CIR $\leftarrow[M D R] \quad / /$ The contents of MDR are copied to CIR
OR ... If the candidate's answer uses the suggested instruction:
The Program Counter contains 30
PC contents are copied to MAR
PC contents are incremented to 31
The contents of address $30 / 2150$ is copied to MDR
MDR contents / 2150 is copied to CIR
(d)

[Total: 15]

Page 5	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2013	9691	32

4 (a) A class is the design/blueprint/template (from which objects are later created)

An object is an instance of a class
An object must be based on a class definition
Many objects can exist for the same class
(b) The class diagram includes:

ADMIN + PROJECTSTAFF subclasses of EMPLOYEE
PROGRAMMER + TECHAUTHOR subclasses of PROJECTSTAFF
Recognised notation for inheritance
EMPLOYEE class FullTimeIndicator : BOOLEAN // CHAR
Salary(Grade) : any except DATE/BOOLEAN
ADMIN class Department : STRING
PROJECTSTAFF class ProjectTeam : STRING

PROGRAMMER class ProgrammingLanguage : STRING

TECHAUTHOR class SoftwareSpecialism : STRING
NB: check for any attribute repeated in a child class. If present score 0 .
MAX 8
(c) Encapsulation

Combining together of an object's properties/data and the methods
Restricts the programmer's access to the object's data // provides for 'data hiding'
Data values can only be read/written using the methods of the class
[Total: 13]

Page 6	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2013	9691	32

5

```
(a) Boolean
Flags when the input name is found
//Serial search algorithm
INPUT SearchName
IsFound \leftarrow FALSE
Index < < 
REPEAT
    IF Customer[Index] = SearchName Allow '(' and ')'
        THEN
            IsFound < TRUE
            OUTPUT "FOUND" at position Index
            ELSE
                Index & Index + 1
    ENDIF
UNTIL (IsFound = TRUE) OR Index=101 / >100
IF IsFound = FALSE // Index = 101/>100
THEN
OUTPUT "Customer name was NOT FOUND"
ENDIF
```

 [1][1]
 (b) $50 / /$ half the number of customers
(c) (i) Items in order
(ii) The function makes a call to itself (in two places)
(iii) BinarySearch (Surname, "Hwang", 1, 11)

Low	High	Middle	RETURNS ...
1	11	6	
(1)	5	3	
4	(5)	4	4

Page 7	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2013	9691	32

6 (a)

Mark as follows ...
-126 binary
-5 binary
Correct final pattern (f/t from their -126 and -5)
Answer is incorrect since outside range possible represented with single byte // answer overflows// final bit pattern is NOT -131
(b) (i) Mantissa: +13/16

Exponent: +3
Number: $+13 / 16 \times 2^{+3} / /$ evidence of shifting the mantissa three places
6.5
(ii) The mantissa starts with the digits 01
// the first two bits in the mantissa are different
(iii) More bits used for the mantissa will result in greater accuracy/precision More bits used for the exponent will result in larger range of numbers
[Total: 10]

Page 8	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - October/November 2013	9691	32

7 Possible answers include:
(a) Encryption of email traffic

Email data if intercepted cannot be read
Encryption of passwords // logging-in to "something"
Designed to prevent unauthorised access
Hospital patient records
Will safeguard the privacy/confidentially of data
(b) Plain text

The (message) text/data/ before encryption // unaltered text/original text
Cipher text
The (message) text after encryption
(c) Symmetric encryption

The plain text /data is encrypted using ...
An encryption key
Decryption is done using the same/ or by implication key
and a matching decryption algorithm/process
(d) Authorisation

Different permissions granted to different users
Restricted access to certain data files/directories/physical devices
User IDs

Authentication

Passwords

(Digital) signature // (Digital) certificate
Use of biometric data and methods

