

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

9691 COMPUTING

9691/22 Paper 2 (Written Paper), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of
the examination. It shows the basis on which Examiners were instructed to award marks. It does not
indicate the details of the discussions that took place at an Examiners’ meeting before marking began,
which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the
examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE,
GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level
syllabuses.

www.XtremePapers.net

http://www.xtremepapers.com

Page 2 Mark Scheme: Teachers’ version Syllabus Paper

 GCE AS/A LEVEL – May/June 2011 9691 22

© University of Cambridge International Examinations 2011

1 (a)

 1 mark per box
 NOT variant (as a data type) [10]

 (b) – Result (e.g. 4+29+8+8+1=50 – size of 1 record)
 – Multiplied by 200 (e.g. 10,000)
 – Add (10%) (e.g. 11,000)
 – Divided by 1024 (e.g. 11,000 ÷ 1024)
 – Result between 6.2 and 59.7KB (e.g. 10.7KB) [5]

Field Name Data Type Size of Field (bytes)

JobID Integer 4

JobDescription String / alphanumeric /
text

20–50

Price Currency / integer / real
/ decimal / float

8

ExpectedCompletionDate Date / integer 8

Paid Boolean 1

www.XtremePapers.net

http://www.xtremepapers.com

Page 3 Mark Scheme: Teachers’ version Syllabus Paper

 GCE AS/A LEVEL – May/June 2011 9691 22

© University of Cambridge International Examinations 2011

 (c) e.g. Pascal
TYPE JobRecord = RECORD

 JobID: Integer;

 JobDescription: String;

 Price: Currency;

 ExpectedCompletionDate: TDateTime;

 Paid: Boolean

END;

e.g. VB6
Type JobRecord

 DIM JobID AS Integer

 DIM JobDescription AS String

 DIM Price AS Decimal

 DIM ExpectedCompletionDate AS Date

 DIM Paid AS Boolean

END Type

e.g. VB 2005
STRUCTURE JobRecord

 DIM JobID AS Integer

 DIM JobDescription AS String

 DIM Price AS Decimal

 DIM ExpectedCompletionDate AS Date

 DIM Paid AS Boolean

END STRUCTURE

e.g. C#
struct jobRecord

{

 public int jobID;

 public string jobDescription;

 public decimal price;

 public datetime expectedCompletionDate;

 public bool paid;

}

 1 mark for heading
 1 mark for structure
 1 mark for all 5 fields correct [3]

 (d) (i) – to check that data is reasonable / acceptable / follows rules
 – to check data is complete [1]

 NOT correctness

 (ii) – range check explanation
 – length check explanation
 – format check explanation

 Max 2 marks [2]
 NOT presence check

 (e) (JobID > 0) AND (JobID <= 1000)

www.XtremePapers.net

http://www.xtremepapers.com

Page 4 Mark Scheme: Teachers’ version Syllabus Paper

 GCE AS/A LEVEL – May/June 2011 9691 22

© University of Cambridge International Examinations 2011

 Alternative answers:
 (JobID > 0) AND (JobID < 1001)
 (JobID >= 1) AND (JobID <= 1000)
 (JobID >= 1) AND (JobID < 1001)

 Correct brackets 1 mark; correct operator 1 mark

 (Paid=True) OR (Paid=False)
 Accept (Paid=yes) OR (Paid=no) (ignore speech marks)
 Accept (Paid=1) OR (Paid=0)

 Correct brackets 1 mark; correct operator 1 mark [4]

 (f) Any sensible + reason accepted
 e.g. 500 – valid data – within acceptable range / normal
 1 – valid data – lower boundary included / extreme
 1000 – valid data – upper boundary included / extreme
 – 1 – invalid data – below boundary
 1001 – invalid data – above boundary

 1 mark per data item, 1 mark per matching reason [8]

www.XtremePapers.net

http://www.xtremepapers.com

Page 5 Mark Scheme: Teachers’ version Syllabus Paper

 GCE AS/A LEVEL – May/June 2011 9691 22

© University of Cambridge International Examinations 2011

2 (a) (i)

 1 mark for each correct column (except Word column)
 1 mark for correct sequence
 1 mark for readable presentation [6]

 (ii)

 1 mark for correct Count column
 1 mark for correct Word(Index)=’a’ column (need false only once after A)
 1 mark for Index column and Word(Index) column correct [3]

Word Count Index Word(Index) Word(Index)= 'a'

banana
0

1
b

false
2

a
true

1
3

n
false

4
a

true
2

5
n

false
6

a
true

3

Word Count Index Word(Index) Word(Index)= 'a'

Ant
0

1
A

false
2

n
false

3
t

false

www.XtremePapers.net

http://www.xtremepapers.com

Page 6 Mark Scheme: Teachers’ version Syllabus Paper

 GCE AS/A LEVEL – May/June 2011 9691 22

© University of Cambridge International Examinations 2011

 (b) IF (Word(Index) = ‘a’) OR (Word(Index) = ‘A’)
 1 mark for OR (allow lower case or)
 1 mark for separate decisions correct
 // 2 marks for If Uppercase(Word(Index))=’A’
 // 2 marks for If Lowercase(Word(Index))=’a’
 must reflect existing pseudocode style [2]

 (c) (i) – meaningful variable names
 – indentation / white space
 – structured English
 – good formatting (lower case, upper case)
 – reserved words are capitalised / in capitals [2]

 (ii) Annotation / comments [1]

 (iii) – to make it easier to find / correct errors
 – to make it easier to modify the program / maintenance [2]

 (d) (i) – numeric/binary (code where each character has a unique value) [1]

 (ii) – letter a-z have increasing ASCII codes
 – Each character’s ASCII value is compared
 – the character with the smaller value is the first character / the character with

the larger value is the second character / (letters are sorted) [3]

 (iii) – characters are compared in turn …
 – from left hand side / start of each word
 – … until two characters are different
 – the lower code value determines the first word
 – if 2 words are the same when one ends …
 – … this is the first word [4]

www.XtremePapers.net

http://www.xtremepapers.com

Page 7 Mark Scheme: Teachers’ version Syllabus Paper

 GCE AS/A LEVEL – May/June 2011 9691 22

© University of Cambridge International Examinations 2011

3 (a) 0 (zero) [1]

 (b) e.g. Pascal

VAR Letter: ARRAY [1..26] OF Integer;

FOR I := 1 TO 26

 DO

 Letter[i] := 0;

Alternative:
VAR Letter: ARRAY [‘a’..‘z’] OF Integer;

FOR l := ‘a’ TO ‘z’

 DO

 Letter[l] := 0;

e.g. VB 2005
DIM Letter(26) AS Integer

FOR i = 1 TO 26

 Letter(i) = 0

NEXT

e.g. C#
string[] letter = new string[26]

for (int i = 1; i <= 26; i++)

{

 letter[i] = 0

}

1 mark for correct declaration range
1 mark for correct data type
1 mark for loop to address full range of array
1 mark for correct assignment [4]

www.XtremePapers.net

http://www.xtremepapers.com

Page 8 Mark Scheme: Teachers’ version Syllabus Paper

 GCE AS/A LEVEL – May/June 2011 9691 22

© University of Cambridge International Examinations 2011

 (c) e.g. Pascal
ThisLetterIndex :=

 ASCII(ThisLetter)-ASCII(‘a’) + 1;

Letter[ThisLetterIndex] :=

 Letter[ThisLetterIndex] + 1;

Alternative: (if character range used for array index)
Letter[ThisLetter] := Letter[ThisLetter] + 1;

e.g. VB 2005
ThisLetterIndex = ASC(ThisLetter)-ASC(“a”) + 1

Letter(ThisLetterIndex) =

 Letter(ThisLetterIndex) + 1

e.g. C#
thisLetterIndex = asc(thisLetter) - asc(‘a’) + 1;

letter[thisLetterIndex] =

 letter[thisLetterIndex] + 1;

1 mark for finding correct array element
1 mark for incrementing running total correctly
1 mark for correct overall logic [1]

4 (a) (i) 1 [1]

 (ii) 6 [1]

 (b) (i) – cannot end
 – infinite loop
 – produces error message (heap/stack overflow) / ’crash’ [2]

 (ii) – Before second line extra code needs to be added
 – … if n<1 (OR if n<0)
 – then error (or equivalent) [2]

 (c) FUNCTION prod(n)

 x � 1

 FOR i � 1 TO n

 x � x * i

 NEXT i

 prod � x

 ENDFUNCTION // RETURN

 1 mark for initialisation
 1 mark for correct loop from 1 to n
 1 mark for multiplying current value by i
 1 mark for assigning return value [4]

www.XtremePapers.net

http://www.xtremepapers.com

