
Version 1.0 0711

General Certificate of Education (A-level)
June 2011

Computing

(Specification 2510)

COMP4

Unit 4: The Computing Practical Project

Report on the Examination

Further copies of this Report on the Examination are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright
AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this
booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy
any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered
charity (registered charity number 1073334).
Registered address: AQA, Devas Street, Manchester M15 6EX.

http://www.aqa.org.uk/

Report on the Examination – General Certificate of Education (A-level) Computing – COMP4 – June
2011

3

General

Centres that entered candidates in 2011 should read this Report in conjunction with the
specific feedback sent to them on the publication of results. If you do not receive this
feedback, please consult your Examinations Officer in the first instance before contacting the
AQA Subject Manager. The comments below highlight the observations of Senior
Moderators during this year’s examination and should be used with the subject specification,
assessment criteria and the COMP4: Advice and Information Booklet for the Teachers'
Standardising Meetings to ensure that centre assessment is accurate. The latter can be
found in the Secure Key Materials section of e-AQA.

There were no changes to the marks awarded for each section of the assessment criteria or
the total mark compared with last year. However, some changes to the awardable marks for
the Analysis section were made in response to teachers’ comments in 2010.

The changes to the COMP4 Analysis assessment criteria were made for the following
reasons:

 to provide criteria for Complex Problems 0 to 6 marks, inclusive.

 to provide criteria for Problems of Adequate Complexity 0 to 3 marks, inclusive.

 to make more positive all the criteria for 0 to 3, inclusive.

 to make the criteria for 4 to 6 marks more demanding for Complex Problems and
Problems of Adequate Complexity (this was a regulatory requirement).

 to make clearer the terms 'less SMART objectives' and 'less than high level
perception of a real end user's needs'.

All of these changes were intended to ensure greater clarity, coherence and accessibility for
teachers and candidates. A copy of the revised COMP4 criteria appeared on the
Noticeboard of the GCE Computing pages on the AQA website in August 2010. All changes,
including changes to the subject content, appeared in the specification on the AQA Website
by 1 September 2010 and letters were sent to all existing centres via the Examinations
Officer.

In addition, there was the possibility of assessing the Complexity at the Analysis stage at a
different level to all of the other sections in response to the small minority of centres in 2010
which felt that the initial problem was undeniably ‘Complex’, but one or more of their
candidates’ implementations had fallen far short of meeting the stated objectives.

These changes to the COMP4 assessment criteria were further clarified at the series of
Standardising Meetings for the 2011 examination which were held during Autumn 2010.

Most centres had encouraged their candidates to write a full User Manual dealing with the
functionality of the whole system. However, the most important task is the need to correctly
identify the complexity level of the problem and its solution from the outset at the Task
Setting/Pre-analysis stage.

This is the second year that the COMP4 specification has operated. Most centres, including
new ones, had taken on the requirements of the new specification and managed to get their
candidates to program a solution at the level of which they were capable. However, there
were some cases where it appeared that much time had been spent on coding because of
the complexity of the problem and the Analysis and Design sections were again probably
written post-implementation when time was running out. It also appeared that the User
Manual and Appraisal sections were also often casualties of poor time management by the
candidate. Appraisal was also frequently ignored or very poorly written.

Report on the Examination – General Certificate of Education (A-level) Computing – COMP4 – June
2011

4

Centres should not encourage their entire cohort to produce CAL systems with just
differences in subject area. This happened in a minority of cases and one centre allowed
three projects based on non-trivial Calculators, with some differences. A variety of projects
is expected from individual centres.

Some ingenious non-data processing projects were seen this year including real world
Complex problems involving Steganography, Processing of Oil Drilling data and Simulation
of the Haber Process. However, data processing projects are still most welcome and often
make it easier for candidates to find genuine end users.

Internal standardisation was generally well carried out. Pleasingly, there was no evidence
this year of Local Assessors marking only individual sections for their centre without reading
through the whole project for each and every candidate – a practice which is to be
discouraged. There was some evidence that the standardising training received by one of
the Local Assessors had not been cascaded to others at the centre.

Despite the potential for high scoring Complex part-packaged/part-coded solutions, the better
projects this year seemed to be the ones where candidates had fully coded the solutions, but
very good solutions were also seen with genuine client-server applications. Most centres
have moved further away this year from customised Microsoft Access projects with minimal
coding as was intended when AQA introduced the new specification.

Administration

Centres that accurately complete the Candidate Record Form (CRF), the Project Log Sheet
(PLS) and the Centre Declaration Sheet (CDS) can really assist in the moderation process.
Moderators always seek to agree with the Local Assessor; this is very difficult to do if all that
is provided are the section marks and final total on the CRF and perhaps a perceived level of
complexity.

The CRF needs to be fully completed, including signatures on page 1 and section A on page
2. It is permissible for a centre to provide its own marking grid for the separate assessment
criteria marks and total mark in place of section B on page 2 of the CRF. A small minority of
centres failed to indicate their perceived level of complexity in the ‘Concluding comments’
section on page 2 of the CRF; this does not help the candidate. If there is difficulty assessing
the complexity of a project, section 6 (Reassessing complexity) of the Teacher Resource
Bank document, ‘Definition of problem types for projects’ may help. The Local Assessor (not
the candidate) must select one level of complexity and justify it by reference to the criteria
described in the ‘Definition of problem types for projects’ document eg ‘This candidate has
used an algorithm which was more complex than O(n squared),’ or, ‘They have used
principle FC2 – user defined data structures and classes,’ etc. This justification is expected
to be written here if it is not clearly explained elsewhere on centre-designed documentation
(if this has been done, please refer the Moderator to it). It is not appropriate only to make
statements like, ‘The candidate worked really hard on this project and produced some
complex code.’ Centres that have devised their own comment sheets are also to be
commended. However, these still need to be attached to the CRF for the candidate
concerned. Also it is still a mandatory Ofqual requirement that the signatures required on
the CRF are indeed present.

On the Project Log Sheet, comments do not need to be written in full, but the candidate does
need to tick the boxes and give the page number(s). The Local Assessor also needs to tick
the boxes that they think are covered, possibly correcting the candidate page numbers as
they go. Many centres used the PLS very effectively to explain their rationale for how they
had awarded their marks.

http://store.aqa.org.uk/qual/gce/pdf/AQA-2510-W-TRB-COMP4DPTP.PDF
http://store.aqa.org.uk/qual/gce/pdf/AQA-2510-W-TRB-COMP4DPTP.PDF

Report on the Examination – General Certificate of Education (A-level) Computing – COMP4 – June
2011

5

The CRF and PLS must be the current versions for the examination series. These may be
obtained from the AQA website (revised versions will be introduced for the 2012
examination).

A number of centres failed to send in Centre Declaration Forms or did not have them
countersigned by the Head of Centre. Some centres also had incorrect additions on their
Candidate Record Forms.

There were some very effective examples of script annotation by some Local Assessors. It is
useful to indicate particularly important sections of code elsewhere as well as just on the
particular page of code.

Centres need to be aware that legacy examination CPT3 contexts must not be used for A2
projects because AQA completed the Analysis section for CPT 3 assignments.

Projects need to be bound as a booklet, ideally with two treasury tags or spiral binding to
enable them to be read easily. Some projects arrived in a completely inappropriate state eg
in a loose sheet state in document folders or in very large ring binders.

A significant number of centres sent in work late, without the prior approval of AQA. This
strategy risks the late publication of centres’ own candidates' results which may have serious
consequences personally for them during the UCAS Clearing process. Centres are reminded
that it is their responsibility to get the projects to the Moderators by the deadline date of 15
May.

Project must be sent to the Moderator using only first class post, retaining proof of postage.
Projects sent by recorded delivery (which requires a signature upon delivery) risk being lost
or returned to the sender if the Moderator does not have the time or the means to travel to
the (sometimes distant) distribution depot to pick up a heavy parcel. Please do not send
projects using a method that requires a signature because many Moderators teach full time
or have other commitments and cannot be expected to collect work from the courier. Please
also ensure that sufficient postage is attached to parcels.

Software

The majority of candidates used Delphi or a version of Visual Basic /VB.Net. Other
languages seen included VBA, C # or C++, Java, Python, QT, ASP, PHP, HTML and
Actionscript 3. HTML and CSS may have formed part of the solutions presented, but they
needed to be combined with one or other of the other programming languages.

Candidates completing a project entirely using a high level language accounted for most of
the very high scoring projects, but a number of very good client-server systems were also
seen involving PHP and MySQL for example. Although a part-packaged/part-coded
approach using Delphi or VB combined with MS Access or SQL Server certainly has the
potential to produce high marks, few of these were seen.

There continues to be a problem with coursework written in Actionscript this year. Although
the implementation may function well, frequently there was very little candidate-written code
with animation being carried out by Actionscript, not the candidate. The later versions of this
language support OOP and sophisticated programming constructs and these need to be
used to demonstrate high technical competence.

PHP-based projects created problems with regards to authenticating code and assessing
complexity. This made assessment difficult for centres where the candidate had taught
themself how to code in PHP and the Local Assessor was in no position to judge the level of

http://web.aqa.org.uk/admin/p_course_crf_2011.php
http://web.aqa.org.uk/admin/p_course_crf_2011.php
http://www.aqa.org.uk/

Report on the Examination – General Certificate of Education (A-level) Computing – COMP4 – June
2011

6

technical competence achieved. PHP-based projects are to be encouraged but care must be
taken to assess these appropriately. There are many code templates on the Web for
candidates to use. Candidates can be credited for adapting these to the needs of their
project but they must acknowledge their source. Judgement of the degree of technical
competence should be dependent on the complexity of the original source and the need for
the candidate to understand the source in order to adapt it to their needs as well as the
degree of adaptation. Selecting complex libraries/code templates is itself complex if the
learning curve is steep and high technical skill is needed to use the libraries/code templates,
eg OpenGL graphics.

Project development

Low scoring candidates still tended to submit simple data processing projects with little
complexity, but most of these were assessed appropriately by the centres.

A very small minority of candidates produced static websites, not client-server applications,
which were similarly heavily penalised and are not appropriate to the specification.

There continues to be far too many candidates who pursue a project that merely used either
a fully coded or a part-packaged/part-coded solution to enter data, save it, update it and to
produce simple reports with little or no data transformation. If it is a part-packaged/part-coded
solution using MS Access for example, all validation must be carried out in the code, not by
using the Masking /Validation built into the package. QBE must not be used to design and
run queries; all queries need to be hard coded in the programming language. Similarly, the
Report Wizard should not be used. However, some of these techniques might be useful in an
earlier prototyping stage. Regardless of the programming language used (even if it was a
fully coded solution) this ‘Data Strategy’ type of project is not complex enough for A2 and
cannot score a good mark however well the report is written and however hard the candidate
worked to produce it.

Project reports

The majority of the high scoring candidates used a programming language or a combination
of a package and substantial programming to demonstrate good coding skills. They also
produced well-tested, well-documented, effective solutions to real problems, with
corroborated end user feedback. Particularly good practice was seen where the agreed
objectives had been signed and dated by the end user.

Candidates who followed the reporting style of the specification and followed this up by
completing the log sheets fully usually justified their assessment. The majority of centres
used the Candidate Record Forms and Project Log Sheets or their own centre-designed
documentation to record a qualitative indication of the candidates’ achievements, rather than
to record how much effort a candidate has put into their work.

Most candidates achieving a high mark addressed fully all the items listed in the specification
in the context of their projects. Some headings are not relevant to a particular project or
just require a brief comment as to why they are not appropriate. The project report is not the
place for general theory. As in previous years, those who scored the highest marks included
well reasoned and justified explanations of all aspects that are listed as indicators in each
section of the specification and, in particular, good programming techniques which, together
with a high performance level in the other sections, tended to be the features that most
distinguished the high scoring candidates from the others.

It would assist the Moderators greatly if items are addressed by candidates in the same order
as the specification and with the same headings, especially when essential items appear in

Report on the Examination – General Certificate of Education (A-level) Computing – COMP4 – June
2011

7

one or more appendices without accurate references as to where these items can be found.
Sampling as described in the subject specification reduces bulk. There should not be lots of
appendices or projects submitted as seven or eight individually treasury tagged booklets.

Analysis

It cannot be over emphasised just how important this section is to set the scene and confirm
the complexity of the project. A number of candidates provided a proper, structured
investigation using one or more formal techniques including interviews, authenticated
questionnaires, observation and the use of analysed source documents. It is not appropriate
for the candidate to assume that their personal view of a problem provides sufficient detail.
This happened in the case of a number of Complex projects scoring high marks for Technical
Solution. What is required is a careful analysis with appropriate evidence of the current and
the proposed systems.

The best examples of good practice contained a comprehensive list of highly detailed
specific objectives constructed from more than one interview with the end user. The specific
objectives were then improved, clarified and checked for completeness after an initial
prototyping stage involving feedback from the end user. The finally agreed set of specific
objectives were agreed, signed off and dated by the genuine end user. The best examples
of projects also contained an outline of the proposed solution using dataflow diagrams and a
careful consideration of the proposed and alternative solutions. The latter is an aid to
confirming the complexity level of the problem.

It should be noted that analysis, design, implementation can be carried out in prototyping
mode from day one of the project leading to a more and more complete picture of what
needs to be done, ie the final analysis., and a clearer idea of how to do it, ie the final design.
The structure of the write up follows the Waterfall model, specified in the specification, but
the detail of each stage can be achieved very effectively by following a prototyping approach.
Staging the write ups of each stage of analysis and design so that sufficient prototyping can
be carried out involving the end user often leads to a better understanding than an approach
in which no design/coding begins until the analysis has been signed off.

The analysis data dictionary still remains a problem area with many candidates ignoring it or
just copying the one presented in Design. The analysis data dictionary captures the data
items and their properties that appear on the artifacts of the current system, eg a paper
based booking form and that which will be required in the proposed system. The properties
will include such items as length, range and size of fields, data types of fields and example
values. The data types may come from any of the formal methods employed and will be as
perceived by the end user, eg a whole number, a decimal number with two decimal places;
not the data types that will be used in the chosen programming language eg Long Integer,
Float(5,2) which will be stated in the design data dictionary.

Numerous candidates totally ignored the section on data volumes even though it was
relevant in their case because they were tackling a data processing problem either fully
coded or alternatively part-packaged/part-coded. In some cases, the data volumes may be
relevant in determining the level of complexity of the project. If it is not relevant for a
particular problem, candidates are expected briefly to justify this reason for its exclusion.

Not all candidates produced DFDs for the existing system even if they did for the proposed
system. Candidates should be encouraged to use standard notation and labelling especially
for DFDs and ERDs. Too frequently there was no data labelling of the flows where these
were not obvious, but sometimes actions were given. An adaptation of DFDs in which the
datastores perform the role of event/message stores and the processes perform the role of
actions that respond to specific events/messages is perfectly acceptable.

Report on the Examination – General Certificate of Education (A-level) Computing – COMP4 – June
2011

8

Many candidates produced clear and measurable objectives that were specific to their
projects rather than generalised, ‘text book’ type objectives such as ‘user friendly’ or ‘system
must load in a certain number of seconds’ (which are not actually wrong in themselves).
‘SMART’ objectives as defined in the current specification enable candidates to achieve
higher marks in both this and the Appraisal section. An example of a specific objective is,
‘The system must allow the user to enter the starting x, y coordinates of the object specified
in specific objective 12.’ An example of a constraint specific objective is, ‘The system must
be able to project through a data projector of maximum resolution 800 x 600.’ The objectives
of some candidates often indicated little processing, but centres still claimed these to be
‘Complex’. The complexity of a problem can be assessed by examining the specific
objectives, the dataflow diagrams of the proposed system, the data model where the latter is
appropriate, an outline of the proposed solution and by discussion with the candidate. This
becomes more difficult if the candidate fails to provide sufficient detail. In this case,
examination of the design and implementation should throw light on the complexity level. The
process can be helped by an initial prototype and identification of the critical path for the
project, ie how difficult is the most difficult path in the project? For example, synchronising
files on two geographically separated computers connected by the Internet. The critical path
in this case is reading the properties of a remote file, ie data and time of creation. and
transferring a copy of the most up-to-date file to the other computer. If this is clearly stated as
a specific objective(s) then it becomes easier to assess the project's complexity because the
steps that contribute to the critical path are sufficiently articulated for an assessor in the
centre to focus on the problem(s) that must be solved for the project to succeed.

Many identified end users (client-users) seemed to have very little influence on the specific
objectives and could provide little or no meaningful feedback in the later Appraisal section. A
few candidates got their end user to sign off and date the agreed objectives. This is good
practice. Candidates producing clear and measurable objectives that were specific to their
project allowed the complexity of the project to be clearly identified. Vague, non-specific,
non-quantifiable ‘specific’ objectives are unhelpful at A2 level as they would be at any level
seeking to meet specific goals.

‘SMART’ objectives enable candidates to achieve higher marks in both this and the Appraisal
section. The basic purpose of their system should be included in their understanding of the
general objectives eg, ‘To produce a system which helps teach the Advanced Level
Mathematics Topics of Matrix Transformations,’ or, ‘To produce a system which helps teach
the topic of The Haber Process in Advanced Level Chemistry.’

Please note that the awardable mark for Analysis is linked to the level of complexity of a
project. If a centre determines the level of complexity as anything other than ‘Complex’, they
cannot then award marks in Band 4 for Analysis.

After reading the Analysis section, the conclusion should be: ‘Yes, I know what the aim and
scope of this project is.’ If this is not the case, and/or all the relevant Analysis assessment
criteria are not fully met, then the project cannot warrant a mark from the top of the range for
the complexity level assigned to the project.

Design

In the past two years, we have been trying to widen the range of project types submitted.
Traditionally when the majority of projects were data processing projects, an emphasis on
data validation and data security was deemed both relevant and important. However, a more
important requirement is, ‘Does the solution/ algorithm meet its specification under all
circumstances?’ For an algorithmic type of project (one that necessarily seeks out one or
more suitable algorithm(s) to solve the problem) the emphasis should be on the ‘correctness’
and effectiveness of the algorithm.

Report on the Examination – General Certificate of Education (A-level) Computing – COMP4 – June
2011

9

Design is about how to solve the problem in general and in detail. The quality of the design is
judged in two ways. Firstly, by the structure of the solution, ie how good is this structure?
Secondly, by how well the design is described, ie could the description be used successfully
to produce the solution? The first relates to planning and the second to how well the planning
is reported.

Some designs were well planned and showed a high level of understanding of the
requirements of an A2 project. Many candidates failed to score high marks by not conveying
an understanding of the concepts of validation and security beyond a very superficial level,
such as field length or presence checks. The high scoring candidates showed a good
appreciation of data structures, object-oriented design of classes and objects, file design and
normalisation where this was required for their solution. The normalisation process can be
demonstrated by showing how the data model develops from the analysis data dictionary
and the ERD shown in that section which may contain unresolved many to many
relationships to 3rd

 normal form using standard notation, or by confirming that the entity
descriptions derived from the E-R diagram are in 3rd normal form or BCNF using one of the
tests, eg every non-key attribute is a fact about the key, the whole key and nothing but the
key. Some candidates are still failing to show proof of normalisation and simply producing
ERDs, often incompletely labelled, especially for the relationships where labelling would add
clarity.

There seems to be a great reluctance to show the HCI design as clearly annotated sketches
or by the use of a graphic package or the form designer related to the chosen programming
language. This allows the candidate to give clear explanations as to the rationale behind the
input and output screens, and how they meet the user needs. Chapters 7.2 and 7.6 of the
AQA endorsed A2 text book1

 contain guidance on HCI. The HCI design should also convey
guidance in pictorial, annotation and prose forms that will enable the HCI design to be
implemented. For example, the rationale may cover the reason for choice of fonts, font sizes
and colours for text, foreground and background as well as specifying these. Really good
practice was demonstrated by the genuine end user signing and dating the agreed final
designs. This provided evidence of end user involvement at various stages of the project.
HCI design involves the end user and other potential users. HCI design is necessarily an
iterative process.

A number of candidates appeared to produce extensive post implementation designs without
even claiming these to be ‘prototypes’. Such ‘prototypes’ should have corroborated end user
involvement by being signed off and dated.

Very few candidates gave clear algorithms relating to the data transformation to be
programmed by the candidate. These algorithms should be in a form that could be coded in
any language and need to concentrate on the complex parts of the system that the candidate
is going to code. Frequently, the ‘sample’ was of very basic functions. We are not very
interested in the algorithms required for login, form navigation and password changes etc.
Algorithms in pseudocode or structured English must be given if a high mark is to be scored.
Those that were given were generally poor with the notable exception of some centres
whose methodical approach made moderation of this section relatively simple.

Frequently ‘algorithms’ were post implementation code extracted from the full code listing,
not in pseudocode or structured English as required. The algorithms presented in this section
are one of the places that Moderators inspect closely at an early stage to confirm the
potential level of complexity of the project. It is not appropriate to omit design algorithms and
forward reference those given in the System Maintenance section because the purpose of
the Design section is to allow a competent third party to implement the required system.

1
 'AQA Computing A2' by Kevin Bond and Sylvia Langfield, published by Nelson Thornes ISBN 978-0-7487-8296-3

Report on the Examination – General Certificate of Education (A-level) Computing – COMP4 – June
2011

10

Candidates were penalised heavily for doing this because the design is simply not feasible
without design algorithms.

If candidates are going to need to embed SQL queries in their programming code because
they will be creating part-packaged/part-coded solutions, it is appropriate to include the
designs for these queries in the design section. Similarly, DDL script designs for table
creation should be included here as appropriate.

Security, integrity and test strategy are problem areas as many candidates are still not
addressing these in the context of their system, but presenting general theory rather than
applying it to their particular projects where relevant.

Technical solution

This section is also closely linked with the level of complexity as well as the level of technical
competence displayed. Many candidates programmed a solution at the level at which they
were capable, but again there was a great deal of evidence of much time being spent on
coding and only when this was completed or when time was running out were the Analysis
and Design sections finally attempted. The complexity demonstrated in the Technical
Solution - eg appropriate use of OOP - is one way that the complexity of the problem as
defined at Analysis can be confirmed. A technical solution that has some embedded SQL or
that creates objects at runtime, for example, does not in itself make the problem being solved
complex. However, if at the Analysis stage doubt is present as to the appropriate level of
complexity, then evidence from Design and Technical Solution stages should be used. A
‘best fit’ method of assessment as opposed to a ‘tick box’ approach is required during
assessment.

High scoring candidates used advanced features of the programming language
appropriately. It is helpful if the complex sections of the code written by the candidate are
highlighted by the candidate or the Local Assessor. This confirms that the candidate
understands what they have done.

The project is not made complex just because a candidate has used Java, C++ or Python for
a fully coded data processing project involving minimal processing of a sample database.
Similarly, writing an iPhone application using an application generator and incorporating
published library code is not ‘Complex’; it is the degree of technical competence of the
candidate-written code and the creativity involved that is important.
A number of centres again allowed candidates to use the data source configuration wizard of
VB.Net or the Express editions of the language to fill a dataset with data ie they used the
TableAdapter feature. This is effectively a package-generated code to establish database
connectivity and does not confirm complexity of the solution. There are other more
appropriate non-wizard methods for database connectivity that should be used to gain high
marks.

Only some Local Assessors made clear statements on the Project Log Sheets or other
centre-generated documentation such as, ‘A fully working robust system,’ ‘most processing
objectives achieved,’ etc. Those that did significantly assisted the moderation process.

Many of the candidates who used a programming language produced well structured listings.
High scoring candidates used advanced features appropriately. It is helpful if such code
actually written by the candidate is highlighted by the Local Assessor and, in particular, the
use of advanced features such as user defined data/record structures need to be clearly
indicated.

Report on the Examination – General Certificate of Education (A-level) Computing – COMP4 – June
2011

11

There is no longer a specific reference to parameter passing in the specification; this is
assumed as demonstrating high levels of technical competence where parameter passing is
appropriate. Solutions are not Complex simply because parameter passing has been used
although this was used as the justification for perceived level by at least one centre.

Some candidates achieved a high mark in this section and went on to gain a high mark
overall, but others seemed to spend the majority of their time on their coding to the neglect of
the other sections that account for the remaining 55 of the 75 marks available.

If a part-packaged/part-coded approach has been adopted, it is important that validation is
coded by the candidate using the programming language and that SQL queries are fully
embedded within the code as discussed in the Teachers' Standardising Meetings. Similarly,
the reports also need to be programmed, not generated by wizards. A small minority of
candidates again simply customised a database package with minimal amount of self-written
code. This is not in keeping with the philosophy of the new specification. Creating a solution
which links a spreadsheet package eg MS Excel with Delphi or VB still counts as a part-
packaged/part-coded system and the appropriate assessment criteria need to be applied. In
simple terms: ‘Package’ does not just mean a database.

The Computing specification does not require a separate ICT-style implementation guide for
the Technical Solution. Evidence for the mark in this section comes from the Testing and
System Maintenance sections and possibly the User Manual where screen captures may be
the only evidence of the working system if other sections are not complete.

System testing

Testing is one of the few sections that is assessed without reference to the perceived level of
complexity. Testing by many of the average and weak candidates was trivial. It is not
appropriate to have multiple tests for login passwords and/or to prove that all the buttons
navigate to other forms and/or print reports. It needs to be emphasised that what is required
is proof that candidates’ coding works to produce accurate results and meets its
specification.

The higher scoring candidates showed evidence of carrying out a thorough test plan
effectively by producing a table of expected results and screen captures to demonstrate that
these results were achieved; the screen captures were well annotated and were cross
referenced to the table entries; they were neither heavily cropped nor simply labelled with a
figure number. Ideally they might be corroborated by the Local Assessor or end user.
Perhaps there should be no more than two screen captures to an A4 page to make them
visible. Shadow script employed on screens printed four to a page made the information
virtually illegible in one instance.

Few candidates used boundary testing effectively. In some cases boundary data was non-
existent because of the type of problem being solved, but these instances need to be clearly
stated and justified. Similarly, erroneous testing may not be possible because of the use of
slider bars etc in the implementation. Sampling is needed for this section to avoid
coursework of potentially massive length. Some candidates incorrectly interpreted extreme
testing as extremely high or extremely low erroneous data. The following definition may
prove helpful: ‘Boundary values are those that are just inside, on and just outside the range
of allowed values’. In this case boundary testing maps onto extreme testing. High scoring
candidates often clearly identified if the data was erroneous, extreme (boundary) or normal.
In simple terms, candidates need to demonstrate that the really clever parts of their system
worked correctly, not that they could trap an incorrect password, accept a correct password
and change a password etc.

Report on the Examination – General Certificate of Education (A-level) Computing – COMP4 – June
2011

12

Maintenance

Many centres used ‘Prettyprinter’ type software to produce the code listings and most
candidates had used appropriate, self-documenting identifier names for variables, constants,
types and subprograms. Many candidates also annotated their code appropriately.
Frequently the procedure and variable listings (including scope as appropriate) were
completely absent. This would make maintenance of the system difficult. However, in a high
scoring project, there may be too many procedures and variables to all be documented
separately. Unless the code listings exemplified a high degree of self documentation to a
degree that minimised the need for substantive variable and procedure lists, candidates were
penalised. A list of the main procedures and important variables, with some explanation of
their importance and role, should be sufficient, backed up by well written code. Useful
information about the main variables should also be contained in the design data dictionary.

Some candidates who had programmed in Java often used the Javadoc tool to create some
of the documentation for this section, but others stated that it generated a lot of paper and
included just a sample.

Not all candidates produced algorithms or a suitable alternative and only a small number of
high scoring candidates produced them at a level that would enable their systems to be
effectively maintained. If the algorithms originally proposed in Design are omitted or have
been changed during Implementation, then they need to be updated here. If they have not
been changed, a clear reference back to the algorithms in the earlier Design section must be
given. This is allowable.

Please do not include any package-generated code. This was especially relevant for
those candidates who had used the data source configuration wizard of VB.Net or the
Express editions of the language to fill a dataset with data. This is effectively package-
generated code to establish database connectivity and does not confirm complexity of the
solution.

A similar problem occurred with a centre whose candidates had all used PyQT to generate
the HCI required by their Python applications. Moderators are not expected to trawl through
the submitted code to decide what was written by the candidate and what was effectively
wizard generated. The centre is expected to identify clearly all of the candidate-written code
with a highlighter or similar. Another centre whose candidate had used Javax Swing to create
the HCI for a Java application had done this.

User manual

Some candidates produced very good User Manual documentation. Many showed screen
captures in the documentation, but too many of these were too heavily cropped and the use
of shadow text made it impossible to read. This was particularly the case with error
messages where the data causing the error needed to be clearly visible as well as the
message. Many failed to convince that the system worked, as there was very little data to
guide the user. Some candidates failed to provide a guide to the complete system as the
subject specification requires.

A detailed table of contents for this section should be included.

Not all candidates provided appropriate installation instructions for the different types of
user/administrator of their system, especially for Client-server systems.

Nevertheless, most candidates incorporated screen captures with appropriate explanations,
but perhaps they should have considered the needs of their users in more depth. Some

Report on the Examination – General Certificate of Education (A-level) Computing – COMP4 – June
2011

13

candidates had provided their user manual for the user to assess during acceptance testing
and this was signed off in some cases. This was again good practice.

Error messages linked to screen captures, trouble shooting and recovery procedures
generally needed to be more extensive. Sometimes, there was very little data in the system
when either testing it or writing the user manual.

Appraisal

Most candidates referred to the objectives set out in their Analysis section, but not all fully
evaluated how these objectives had, or had not, been met. Some simply stated, ‘Yes,’ or
‘No’ against each objective. Assuming that candidates had produced a detailed list of
SMART objectives in agreement with their end user in the Analysis section, there was easy
scope for comparison and discussion of outcomes versus objectives.

There were only a few centres that had candidates with significant evidence of genuine,
authenticated user feedback. This needs to take the form of a dated and signed letter on
headed notepaper or a genuine e-mail from the end user. Local Assessors should
authenticate user feedback by communicating with the end user and signing and dating this
section of the report, especially where it is obvious that the candidate has just typed this into
the report. The best feedback evidence had criticisms as well as praise for what had been
achieved by the candidate so as to allow analysis and derivation of possible improvements
etc. Some of the feedback presented by candidates was unconvincing to say the least. Even
if genuine feedback had been presented, many candidates still failed to analyse it and then
use it as the basis for discussing possible future developments/ improvements. Many
possible extensions (if indeed present) appeared to be entirely candidate driven.

Quality of Written Communication

This was usually quite good, but a detailed Table of Contents was not always present at the
front of the report. Most centres accurately assessed this criterion, with the general view
being that acceptable use of English, a well-structured report divided into the sections
detailed in the specification, and the appropriate use of word-processing facilities could score
the full three marks.

It is again disappointing that many candidates failed to use a word-processor appropriately;
many project reports were missing such basics as headers, footers and word-processor-
generated page numbers and a table of contents. Page numbering was hand-written in some
cases. It would be useful if candidates were able to reprint the column headings on
subsequent pages of the test plan.
It is not really appropriate to award full marks for this section when candidates put lots of
important components of the documentation in appendices, especially if these were not
accurately referenced in the sections where they should have been situated. This was
exacerbated if there was no overall Table of Contents at the front of the project or a fully
completed Project Log Sheet. Minor spelling and grammatical mistakes that did not detract
from the meaning were not penalised this year.

Grade boundaries and cumulative percentage grades are available on the Results
Statistics page of the AQA Website.

UMS conversion calculator www.aqa.org.uk/umsconversion

http://web.aqa.org.uk/over/stat.php
http://web.aqa.org.uk/over/stat.php

