
General Certificate of Education
Advanced Subsidiary Examination
June 2010

Computing COMP1/PM/JA
Unit 1 Problem Solving, Programming, Data Representation

and Practical Exercise

Preliminary Material

A copy of this Preliminary Material will appear on the GCE Computing front page on the
AQA Website on Monday 1 March 2010. It will include the Skeleton Program as issued
by AQA.

A copy of the Preliminary Material, including any amendments to the Skeleton Program
made by the Head of Computing and approved by AQA, must be given to candidates by
their centre on or after Thursday 1 April 2010.

Information for Candidates
! This Preliminary Material comprises
 � Instructions to Candidates and a
 � Skeleton Program for Java which your teacher will supply.
 You must only use the version of the Skeleton Program supplied by your teacher.

! Candidates are advised to familiarise themselves with the Preliminary Material before the
examination.

! You must not take any copy of the Preliminary Material or any other material into the examination
room. A second copy of the Preliminary Material will be given to you in the examination. Your
teacher will also provide you with access electronically to the Skeleton Program at the start of the
examination.

COMP1/PM/JAVersion 2.0

2

M/Jun10/COMP1/PM/JA_v2.0

Instructions to Candidates

The question paper is divided into four sections and a recommendation is given to candidates as to
how long to spend on each section. Below are the recommended timings for the 2010 examination.

Section A
You are advised to spend no more than 35 minutes on this section.
Questions will examine the specification content not specific to the Preliminary Material.

Section B
You are advised to spend no more than 20 minutes on this section.
You will be asked to create a new program not related to the Preliminary Material or Skeleton
Program.

Section C
You are advised to spend no more than 15 minutes on this section.
Questions will refer to the Preliminary Material and the Skeleton Program, but will not require
programming.

Section D
You are advised to spend no more than 50 minutes on this section.
Questions will use the Skeleton Program and the Preliminary Material.

Electronic Answer Document

Answers to all questions must be written into the word processed document made available to
you at the start of the examination and referred to in the question paper as the Electronic Answer
Document.

Preparation for the Examination

For your programming language you should ensure that you are familiar with this Preliminary
Material, including the Skeleton Program.

Turn over!

3

M/Jun10/COMP1/PM/JA_v2.0

'Noughts and Crosses Game'

The Skeleton Program in this Preliminary Material is for a program based on the two-player game
of 'Noughts and Crosses'.

When playing Noughts and Crosses players take turns to place a symbol on the board. The board
is a 3x3 grid, which is initially empty. One player uses the symbol 'X', the other the symbol 'O'.
Players are only allowed to place a symbol in an empty position on the board. The aim of the game
is to be the first person to get three of their symbols in a line � a line of symbols can be either in a
row, in a column or along a diagonal. Three winning board positions for the player using the symbol
'X' are shown in Figure 1.

Figure 1

X X X O X O X

O O X O X O

O X X O

In the Skeleton Program players use row and column coordinates to specify where they wish their
'Xٰ' or 'O' symbol to be placed. First, they specify the x coordinate � this indicates which column
they want; then they specify the y coordinate � this indicates which row they want. Figure 2 shows
part of a game. The first board, (a), is the initial position, the second board, (b), shows what would
happen if the 'X' player enters coordinates of (1,3).

Figure 2

 (a) (b)

1 2 3

1

2

3

The game finishes when a player gets three of their symbol in a line or there are no empty cells on
the grid. If the grid is full but neither player has a line of three symbols then the game is drawn.
After the last move the result of the game is displayed.

1 2 3

1

2

3 X

4

M/Jun10/COMP1/PM/JA_v2.0

Outline Design

The Structured English description of an algorithm for playing one game is as follows.

SET number of moves TO 0
Clear Board
Display Board
IF starting symbol IS EQUAL TO player one�s symbol
 THEN OUTPUT message saying player one is going to make a move first
 ELSE OUTPUT message saying player two is going to make a move first
ENDIF
SET current symbol TO starting symbol
DO
 DO
 Get move coordinates
 Check if move is valid
 IF NOT valid move
 THEN OUTPUT invalid move message
 ENDIF
 UNTIL valid move
 Make move
 Display Board
 Check if game has been won
 INCREMENT number of moves BY 1
 IF NOT game has been won
 THEN
 IF number of moves IS EQUAL TO 9
 THEN game has been drawn
 ELSE change current symbol
 ENDIF
 ENDIF
UNTIL game has been won OR game has been drawn
OUTPUT result of game

5

M/Jun10/COMP1/PM/JA_v2.0

Variables

The main variables used are as follows.

Identifier Data Type Purpose
NoOfMoves Integer Used to keep track of how many

moves have been made in the game
so far ie how many positions in the
board have a symbol in them

CurrentSymbol Char
Used to indicate the symbol being
used by the player whose turn it
currently is - 'X' or 'O'

Board Array[1..3,1..3] Of
Char

A two-dimensional array used to
indicate which symbol, if any, is
currently in each position on the 3x3
grid.

Notes

The programming language used to code the game will determine the letter case for each identifier,
and so may not match exactly the identifiers shown in the table above.

Your chosen programming language may use arrays with a lower bound value of 0. If so, array
cells with indices of 0 are not used.

END OF INSTRUCTIONS TO CANDIDATES

package comp1_java_2010;

import java.util.Random;

/* Skeleton program code for the AQA Comp1 Summer 2010 examination
 * this code should be used in conjunction with the Preliminary
 * Material, written by the AQA COMP1 Programmer Team developed in Netbeans 6.7
 * Note the private modified has been left out to make the program
 * easier to read for AS students. The AQA Console class is used.
 */

public class Main {

 // class Coordinate facilitates the passing of
 // information back through a parameter
 class Coordinate {
 int value;
 } // end inner class Coordinate
 char board[][] = new char[4][4];
 String playerOneName;
 String playerTwoName;
 float playerOneScore;
 float playerTwoScore;
 int xCoord;
 int yCoord;
 boolean validMove;
 int noOfMoves;
 boolean gameHasBeenWon;
 boolean gameHasBeenDrawn;
 char currentSymbol;
 char startSymbol;
 char playerOneSymbol;
 char playerTwoSymbol;
 char answer;
 //Console is specifically for the Java version
 Console console = new Console();

 public Main() {
 playerOneName = console.readLine("What is the name of player one? ");
 playerTwoName = console.readLine("What is the name of player two? ");

 playerOneScore = 0;
 playerTwoScore = 0;
 do { //Choose player one's symbol
 playerOneSymbol = console.readChar((playerOneName +
 " what symbol do you wish to use X or O? "));

 if (playerOneSymbol != 'X' && playerOneSymbol != 'O') {
 console.println("Symbol to play must be uppercase X or O");
 } // end if
 } while ((playerOneSymbol != 'X' && playerOneSymbol != 'O'));
 if (playerOneSymbol == 'X') {
 playerTwoSymbol = 'O';
 } else {
 playerTwoSymbol = 'X';
 } // end if/else
 startSymbol = getWhoStarts();
 do { // Play a game
 noOfMoves = 0;
 gameHasBeenDrawn = false;
 gameHasBeenWon = false;
 clearBoard(board);
 console.println();
 displayBoard(board);
 if (startSymbol == playerOneSymbol) {
 console.println(playerOneName + " starts playing " + startSymbol);
 } else {
 console.println(playerTwoName + " starts playing " + startSymbol);
 } // end if/else
 console.println();
 currentSymbol = startSymbol;
 do { //Play until a player wins or the game is drawn
 do { //Get a valid move
 Coordinate x = new Coordinate();
 Coordinate y = new Coordinate();
 getMoveCoordinates(x, y);
 xCoord = x.value;
 yCoord = y.value;
 validMove = checkValidMove(xCoord, yCoord, board);
 if (!validMove) {
 console.println("Coordinates invalid, please try again");
 } // end if
 } while (!validMove);

 board[xCoord][yCoord] = currentSymbol;
 displayBoard(board);
 gameHasBeenWon = checkXOrOHasWon(board);
 noOfMoves++;
 if (!gameHasBeenWon) {
 // Check if maximum number of
 // allowed moves has been reached
 if (noOfMoves == 9) {
 gameHasBeenDrawn = true;
 } else {
 if (currentSymbol == 'X') {
 currentSymbol = 'O';
 } else {
 currentSymbol = 'X';
 } // end if/else
 } // end if/else
 } // end if
 } while (!gameHasBeenWon && !gameHasBeenDrawn);
 // Update scores and display result
 if (gameHasBeenWon) {
 if (playerOneSymbol == currentSymbol) {
 console.println(playerOneName + " congratulations you win!");
 playerOneScore++;
 } else {
 console.println(playerTwoName + " congratulations you win!");
 playerTwoScore++;
 }// end if/else
 } else {
 console.println("A draw this time!");
 } // end if/else
 console.println();
 console.println(playerOneName + " your score is: " + String.valueOf(playerOneScore));
 console.println(playerTwoName + " your score is: " + String.valueOf(playerTwoScore));
 console.println();
 if (startSymbol == playerOneSymbol) {
 startSymbol = playerTwoSymbol;
 } else {
 startSymbol = playerOneSymbol;
 } // end if/else
 answer = console.readChar("Another game Y/N? ");
 } while (answer != 'N' && answer != 'n');

 } // end constructor Main

 void displayBoard(char[][] board) {
 int row;
 int column;
 console.println(" | 1 2 3 ");
 console.println("--+-------");
 for (row = 1; row <= 3; row++) {
 console.write(row + " | ");
 for (column = 1; column <= 3; column++) {
 console.write(board[column][row] + " ");
 } // end column
 console.println();
 } // end row
 } // end method displayBoard

 void clearBoard(char[][] board) {
 int row;
 int column;
 for (row = 1; row <= 3; row++) {
 for (column = 1; column <= 3; column++) {
 board[column][row] = ' ';
 } // end column
 } // end row
 } // end method clearBoard

 void getMoveCoordinates(Coordinate xCoordinate, Coordinate yCoordinate) {
 xCoordinate.value = console.readInteger("Enter x Coordinate: ");
 yCoordinate.value = console.readInteger("Enter y Coordinate: ");
 } // end method getMoveCoordinates

 boolean checkValidMove(int xCoordinate, int yCoordinate, char[][] board) {
 boolean validMove;
 validMove = true;
 //Check the x Coordinate is valid
 if (xCoordinate < 1 || xCoordinate > 3) {
 validMove = false;
 } // end if
 return validMove;
 } // end method checkValidMove

 boolean checkXOrOHasWon(char[][] board) {
 boolean xOrOHasWon;
 int row;
 int column;
 xOrOHasWon = false;
 for (column = 1; column <= 3; column++) {
 if (board[column][1] == board[column][2] &&
 board[column][2] == board[column][3] &&
 board[column][2] != ' ') {
 xOrOHasWon = true;
 } // end if
 } // end column
 for (row = 1; row <= 3; row++) {
 if (board[1][row] == board[2][row] &&
 board[2][row] == board[3][row] &&
 board[2][row] != ' ') {
 xOrOHasWon = true;
 } // end if
 } // end row
 return xOrOHasWon;
 } // end method checkXOrOHasWon

 char getWhoStarts() {
 char whoStarts;
 int randomNo;
 Random objRandom = new Random();
 randomNo = objRandom.nextInt(100);
 if (randomNo % 2 == 0) {
 whoStarts = 'X';
 } else {
 whoStarts = 'O';
 } // end if/else
 return whoStarts;
 } //end method getWhoStarts

 public static void main(String[] args) {
 new Main();
 } //end method main
} // end class main

package comp1_java_2010;

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;

/* Class for use in AQA COMP1 exams for students using Java.
 *
 * class Console will be made available for students to use,
 * although they are not restricted to just using it for i/o to the console.
 * If they know how to use java.io.Console that is fine.
 * Also, System.out.println can be used for outputs.
 * This class should save time in the exam, especially if they
 * have been used by students beforehand.
 */
class Console {

 public Console() {
 }// end of constructor CommandLineInput
 //returns the first character of a line typed in.

 public char readChar() {
 return readChar("");
 } // end method readChar

 public char readChar(String prompt) {
 return readLine(prompt).charAt(0);
 } // end method readChar

 public byte readByte(String prompt) {
 try {
 return Byte.parseByte(readLine(prompt).substring(0, 1));
 } catch (NumberFormatException nfe) {
 println(nfe.toString() + "Parsing a Byte");
 } catch (Exception e) {
 println("another exception" + e.toString());
 }
 return -1;

 } // end method readByte

 public byte readByte() {
 return readByte("");
 } // end method readByte

 public String readLine() {
 return readLine("");
 } // end method readLine with no parameter

 public String readLine(String prompt) {
 String input = "";
 System.out.print(prompt);
 InputStreamReader isr = new InputStreamReader(System.in);
 BufferedReader br = new BufferedReader(isr);
 try {
 input = br.readLine();
 } catch (IOException ioe) {
 println("IO Error reading from command line.");
 System.exit(1);
 }
 return input;
 } // end method readLine

 public int readInteger(String prompt) {
 try {
 return (int) Integer.parseInt(readLine(prompt));
 } catch (NumberFormatException nfe) {
 System.out.println(" Number format excpetion.");
 System.out.println(nfe.toString());
 } // end try/catch
 return -1;
 } // end method readInteger

 public void print(Object o) {
 String output = String.valueOf(o);
 System.out.print(output);
 } // end method print

 public void println() {
 println("");

 } // end method println with no parameter

 public void println(Object o) {
 String output = String.valueOf(o);
 System.out.println(output);
 } // end method println

 public void write(Object o) {
 print(o);
 } // end method write

 public void writeLine() {
 println();
 } // end method writeLine with no parameter

 public void writeLine(Object o) {
 println(o);
 } // end method writeLine

 public void printf(String format, Object args) {
 System.out.printf(format, args);
 } // end method printf
} // end class Console

