
Version 1.0

klm

General Certificate of Education

June 2010

Computing COMP1

Unit 1: Problem Solving, Programming, Data
 Representation and Practical
 Exercise

Final

 Mark Scheme

Computing COMP1 - AQA GCE Mark Scheme 2010 June series

2

Mark schemes are prepared by the Principal Examiner and considered, together with the
relevant questions, by a panel of subject teachers. This mark scheme includes any
amendments made at the standardisation meeting attended by all examiners and is the scheme
which was used by them in this examination. The standardisation meeting ensures that the
mark scheme covers the candidates’ responses to questions and that every examiner
understands and applies it in the same correct way. As preparation for the standardisation
meeting each examiner analyses a number of candidates’ scripts: alternative answers not
already covered by the mark scheme are discussed at the meeting and legislated for. If, after
this meeting, examiners encounter unusual answers which have not been discussed at the
meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further
developed and expanded on the basis of candidates’ reactions to a particular paper.
Assumptions about future mark schemes on the basis of one year’s document should be
avoided; whilst the guiding principles of assessment remain constant, details will change,
depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT
AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material
from this booklet for their own internal use, with the following important exception: AQA cannot give permission to
centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334).
Registered address: AQA, Devas Street, Manchester M15 6EX

Computing COMP1 - AQA GCE Mark Scheme 2010 June series

3

The following annotation is used in the mark scheme:

; - means a single mark
// - means alternative response
/ - means an alternative word or sub-phrase
A - means acceptable creditworthy answer
R - means reject answer as not creditworthy
I - means ignore.

Qu Part Marking Guidance Marks
1 01 167;

1

 02

1 mark for correct integer part
1 mark for correct fractional part

2

 03 -;89;

1 mark for correct sign
1 mark for correct integer value

2

 04 A7;

1

2 05 1

 06 1000010; R. more than 7 bits used

1

 07 01000001

Mark as follows:
Correct parity bit for the candidate’s data bits;
Correct data bits;

R. if not 8 bits

2

 08 Sender counts/checks the number of 1s in the bit pattern/value/data;
(If even number of 1s then 0 parity bit is added; if odd 1 is added;) // Extra bit
added to ensure even number of 1s;

Receiver counts/checks the number of 1s in the bit pattern/value/data
received; If odd it identifies that an error has occurred; and requests for data
to be resent; A. If even it accepts the data received A. if even data is
assumed to be correct; A. an even number of errors will be detected; R if
even, data is correct
 // receiver regenerates parity bit from data received; compares generated
parity bit with received parity bit; if different requests for data to be resent
R. Implication that sender or receiver are people.

Max 4

Computing COMP1 - AQA GCE Mark Scheme 2010 June series

4

3 09 6/100; //600;;

2

 10 8 (bits); A. 1 byte;

1

 11 Sample at a frequency (at least) twice the rate; of the highest frequency (that
can be present in the original signal);

2

4 12 Meaningful/appropriate/suitable identifiers // A. example;
Indentation // effective use of white space;
Subroutines / Procedures and functions/methods/modules; with interfaces //
using parameters to pass values;
Subroutines / Procedures and functions/methods/modules should execute a
single task;
Appropriate use of structured statements // use of (selection and
repetition)/repetition;
Avoid use of goto statements;
Consistent use of case/style for identifier names;
Use of named constants;
Use of user-defined data types;
Use of libraries;
House-style naming conventions // following conventions; A. by explained
example
A. Use of local variables
R. Commenting
R. "easier to understand"

Max 3

5 13 Must have the concept of problem/task for the first mark

A (step-by-step) description of how to complete a task / a description of a
process that achieves some task / a sequence of steps that solve a problem /
A sequence of unambiguous instructions for solving a problem;
R. Set of instructions

Independent of any programming language;
That can be completed in finite time;

Max 2

 14
Answer Count Remainder

True - -
 2 1
 3 1
 4 3
 5 2
 6 1

Mark as follows:
answer column; A. True instead of blank cells R. if no evidence that dry
run has been attempted
count column;

Computing COMP1 - AQA GCE Mark Scheme 2010 June series

5

1 mark per correct value in remainder column;;;;

6

 15 Works out if x is a prime number //
Checks if x is divisible (with no remainder);

1

6 16 VB.NET
Sub Main()
 Dim PlayerOneScore, PlayerTwoScore, NoOfGamesPlayed,
NoOfGamesInMatch As Integer
 Dim PlayerOneWinsGame As Char

 PlayerOneScore = 0
 PlayerTwoScore = 0
 Console.Write("How many games?")
 NoOfGamesInMatch = Console.ReadLine()
 For NoOfGamesPlayed = 1 To NoOfGamesInMatch
 Console.Write("Did Player One win the game (enter Y
or N)?")
 PlayerOneWinsGame = Console.ReadLine
 If PlayerOneWinsGame = "Y" Then
 PlayerOneScore = PlayerOneScore + 1
 Else
 PlayerTwoScore = PlayerTwoScore + 1
 End If
 Next
 Console.WriteLine(PlayerOneScore)
 Console.WriteLine(PlayerTwoScore)
 Console.ReadLine()
End Sub

VB6
Private Sub Form_Load()
 Dim PlayerOneScore As Integer
 Dim PlayerTwoScore As Integer
 Dim NoOfGamesPlayed As Integer
 Dim NoOfGamesInMatch As Integer
 Dim PlayerOneWinsGame As String

 PlayerOneScore = 0
 PlayerTwoScore = 0
 NoOfGamesInMatch = InputBox("How many games?")
 For NoOfGamesPlayed = 1 To NoOfGamesInMatch
 PlayerOneWinsGame = InputBox("Did Player One win
the game (enter Y or N)?")
 If PlayerOneWinsGame = "Y" Then
 PlayerOneScore = PlayerOneScore + 1
 Else
 PlayerTwoScore = PlayerTwoScore + 1
 End If
 Next
 MsgBox (PlayerOneScore)
 MsgBox (PlayerTwoScore)
End Sub

Computing COMP1 - AQA GCE Mark Scheme 2010 June series

6

Alternative answer – one msgbox instead of two
MsgBox (PlayerOneScore & vbCrLf & PlayerTwoScore)

Pascal
Program Question6;
Var PlayerOneScore, PlayerTwoScore, NoOfGamesPlayed,
NoOfGamesInMatch:Integer;
Var PlayerOneWinsGame:Char;
Begin
 PlayerOneScore := 0;
 PlayerTwoScore := 0;
 Writeln('How many games?');
 Readln(NoOfGamesInMatch);
 For NoOfGamesPlayed := 1 To NoOfGamesInMatch Do
 Begin
 Write('Did Player One win the game (enter Y or
N)?');
 Readln(PlayerOneWinsGame);
 If PlayerOneWinsGame = 'Y'
 Then PlayerOneScore := PlayerOneScore + 1
 Else PlayerTwoScore := PlayerTwoScore + 1;
 End;
 Writeln(PlayerOneScore);
 Writeln(PlayerTwoScore);
 Readln();
End.

Mark as follows:
All variables declared correctly; I. Case A. Minor typos R. If additional
variables
PlayerOneScore, PlayerTwoScore initialised correctly;
Correct prompt (I. Case A. minor typos) followed by NoOfGamesInMatch
assigned value entered by user;
FOR loop formed correctly including end of loop in correct place;
Correct prompt (I. Case A. minor typos) followed by PlayerOneWinsGame
assigned value entered by user;
IF followed by correct condition; R. if does not cater for capital letter 'Y'
THEN followed by correct assignment statement;
ELSE followed by correct assignment statement;
output of both player’s scores after loop; A. Message displayed with score

9

 17 ****SCREEN CAPTURE****
Must match code from 16, including prompts on screen capture matching
those in code

Mark as follows:
'How many games?' + user input of '3';
'Did Player One win the game (enter Y or N)? ' + user input of 'Y';
'N' entered by user for second/third game;
Correct scores shown for each player (A. follow through);
I. spacing

4

Computing COMP1 - AQA GCE Mark Scheme 2010 June series

7

7 18 Board // PlayerOneName // PlayerTwoName // PlayerOneScore
// PlayerTwoScore // XCoord // YCoord // ValidMove //
NoOfMoves // GameHasBeenWon // GameHasBeenDrawn //
CurrentSymbol // StartSymbol // PlayerOneSymbol //
PlayerTwoSymbol // Answer

PHP: see PHP mark scheme
Java only: console;

1

 19 Row // Column // RandomNo // ValidMove // XOrOHasWon //
WhoStarts;

VB6 only: BoardAsString;
Java and Python: X // Y;
Java and C#: ObjRandom;
PHP: see PHP mark scheme

1

 20 A global variable is accessible/useable from anywhere in the program;
A local variable is only accessible/useable in the program block / procedure /
function / subroutine / method in which it is declared;
//
Local variables only exist/use memory whilst the procedure / function /
subroutine / method is executing; global variables exist / use memory the
whole time the program is executing;

2

 21 When the user enters 'X' ; or 'O'; // When PlayerOneSymbol contains 'X';
or 'O';

2

 22 Because players could be making moves referring to non-empty cells; as no
check is made for this (in the CheckValidMove subroutine); // Because
some illegal moves are allowed;;

Mark as follows:
a move that is not legal being attempted (A. by example); and is allowed (A.
by implication);

2

 23 NoOfMoves // Row // Column;
PHP: see PHP mark scheme

1

 24 PlayerOneName // PlayerTwoName // WhoStarts //
PlayerTwoSymbol // RandomNo;

Python only: X // Y;
PHP: see PHP mark scheme

1

 25 CheckValidMove;

1

 26 VB.NET
RandomNo = Rnd()*100 // WhoStarts = "X" // WhoStarts =
"O" // GetWhoStarts = WhoStarts;

VB6
RandomNo = Rnd() * 100 + 1 // WhoStarts = "X" //

Computing COMP1 - AQA GCE Mark Scheme 2010 June series

8

WhoStarts = "O" // GetWhoStarts = WhoStarts;

Pascal
RandomNo := Random(100) // WhoStarts := 'O ' // WhoStarts
:= 'X' // GetWhoStarts := WhoStarts;

R. if extra code included

1

 27 It looks at the remainder obtained by dividing RandomNo by 2;
A. any explanation that clearly explains both sides of comparison
A. if the random number/RandomNo is even;

if the value is 0/even it sets WhoStarts to 'X'; *
if the value is not 0/odd it sets WhoStarts to 'O';*
Award only 1 mark of the 2 available marks labelled with asterisks(*) if
candidate has identified conditions but described outcomes in terms of who
will start game instead of assignment of value into WhoStarts. Candidate
must cover both the Then and Else parts to get this 1 mark if specific
variable name not used.

3

8 28 Boundary values are those that are just inside, on and just outside the range
of allowed values;

1

 29 2; 3; 4; R. non-integer values

Max 1 if additional values given

3

 30 ****SCREEN CAPTURE(S)****

Screen capture showing boundary test resulting in correct behaviour;
Must match one of the boundary values given in 29.

R. If screen capture does not show a correct boundary value given as an
answer to question 29

1

9 31 VB.NET / VB6
 If YCoordinate < 1 Or YCoordinate > 3 Then ValidMove =
False
 If ValidMove = True then
 If Board(XCoordinate, YCoordinate) <> " " Then
ValidMove = False
 End If

A. If Board(XCoordinate, YCoordinate) = "X" Or
Board(XCoordinate, YCoordinate) = "O" Then
A. If Not(Board(XCoordinate, YCoordinate) = " ") Then
A. If ValidMove = True AndAlso Board(XCoordinate,
YCoordinate) <> " " Then ValidMove = False (VB.NET only)

Computing COMP1 - AQA GCE Mark Scheme 2010 June series

9

Pascal
If (YCoordinate < 1) Or (YCoordinate > 3) Then
ValidMove:=False;
If ValidMove = True Then
 If Board[XCoordinate, YCoordinate] <> ' ' Then
ValidMove:=False;

Mark as follows:
IF statement with condition YCoordinate<1, correct logic and second
condition of YCoordinate>3;
Return a value of false if y coordinate is an illegal value; R if value would not
actually be returned;
IF statement checking that move is valid so far;
IF statement comparing value of Board(XCoordinate, YCoordinate) with " ";
returning a value of false if cell is not empty; R if value would not actually be
returned;
A. Equivalent logic
A. Alternative answers where Return statements are used after each
validation check instead of assigning a Boolean value to ValidMove

Alternative Answer (C, C#, PHP)
Using only one IF statement, one mark for each correct condition plus one
mark for correct Boolean operators - as long as the check that the Board cell
is empty is the last condition (if Board cell is not the last condition marks can
only be awarded for any correct conditions that appear before it)

Alternative Answer (Java, Python, VB.NET)
Using only one IF statement and short-circuit evaluation operators, one mark
for each correct condition plus one mark for correct Boolean operators - as
long as the check that the Board cell is empty is the last condition (if Board
cell is not the last condition marks can only be awarded for any correct
conditions that appear before it). Operators for short-circuit evaluation:
VB.NET AndAlso/OrElse instead of And/Or; Python and/or instead of &/|;
Java &&/|| instead of &/|

Alternative Answer (Pascal)
Using only one IF statement with all conditions connected by OR operators
and the check for non-empty cell being the last condition. If non-empty cell
test is not the last condition maximum of 4 marks.

Alternative Answer
VB.NET / VB6
 If XCoordinate < 1 Or XCoordinate >3 then
 ValidMove = False
 Else
 If YCoordinate < 1 Or YCoordinate > 3
 Then ValidMove = False
 Else
 If Board(XCoordinate, YCoordinate) <> " " Then
ValidMove = False
 End If
 End If

Computing COMP1 - AQA GCE Mark Scheme 2010 June series

10

Pascal
If (XCoordinate < 1) Or (XCoordinate > 3)
 Then
 Begin
 ValidMove := False;
 End
 Else
 Begin
 If (YCoordinate < 1) Or (YCoordinate > 3)
 Then
 Begin
 ValidMove := False;
 End
 Else
 Begin
 If Board[XCoordinate, YCoordinate] <> '
' Then ValidMove := False;
 End
 End;

Mark as follows:
IF statement with condition YCoordinate<1, correct logic and second
condition of YCoordinate>3;
Return a value of false if y coordinate is an illegal value; R if value would not
actually be returned;
Correct use of nested ifs so that checking cell is empty on board only occurs
if xcoordinate and ycoordinate are in the allowed range;
IF statement comparing value of Board(XCoordinate, YCoordinate) with " ";
returning a value of false if cell is not empty; R if value would not actually be
returned
A. Equivalent logic
A. Alternative answers where Return statements are used after each
validation check instead of assigning a value to ValidMove

5

 32 ****SCREEN CAPTURE(S)****
This is conditional on sensible code for 31

Mark as follows:
Test showing coordinate (2,-3) and error message;
Test showing coordinate (2, 7) and error message;
R. other coordinates
A. In VB6 a test showing only Y value of the coordinate i.e. -3, 7 and error
message.

2

 33 ****SCREEN CAPTURE****
This is conditional on sensible code for 31. Mark should not be awarded if
code would not work
e.g. if Boolean values are assigned to ValidMove and there is no Return
statement after the validation check
e.g. trying to reference a position in the array that is out of bounds and would
result in an error

Mark as follows:
Screen capture showing board position, coordinates of illegal move and error
message;

1

Computing COMP1 - AQA GCE Mark Scheme 2010 June series

11

10 34 VB.NET/VB6
 If Board(2, 2) = Board(3, 3) And Board(2, 2) =
Board(1, 1) And Board(2, 2) <> " " Then xOrOHasWon = True
 If Board(2, 2) = Board(3, 1) And Board(2, 2) =
Board(1, 3) And Board(2, 2) <> " " Then xOrOHasWon = True

Alternative answer
((Board(2,2)= "X") OR (Board(2,2) ="O"))
instead of <> " "

Alternative answer
 If Board(2, 2) = Board(3, 3) Then
 If Board(2, 2) = Board(1, 1) Then
 If Board(2, 2) <> " " Then
 xOrOHasWon = True
 End If
 End If
 End If

 If Board(2, 2) = Board(3, 1) Then
 If Board(2, 2) = Board(1, 3) Then
 If Board(2, 2) <> " " Then
 xOrOHasWon = True
 End If
 End If
 End If

Pascal
If (Board[2, 2] = Board[3, 3]) And (Board[2, 2] =
Board[1, 1]) And (Board[2, 2] <> ' ') Then xOrOHasWon :=
True;
If (Board[2, 2] = Board[3, 1]) And (Board[2, 2] =
Board[1, 3]) And (Board[2, 2] <> ' ') Then xOrOHasWon :=
True;

Alternative answer
((Board[2,2]= 'X') OR (Board[2,2] ='O'))
instead of <> ' '

Alternative answer
If (Board[2, 2] = Board[3, 3]) Then
 If (Board[2, 2] = Board[1, 1]) Then
 If (Board[2, 2] <> ' ') Then
 xOrOHasWon := True;
If (Board[2, 2] = Board[3, 1]) Then
 If (Board[2, 2] = Board[1, 3]) Then
 If (Board[2, 2] <> ' ') Then
 xOrOHasWon := True;

Mark as follows:
Comparison of two cells on one diagonal;
Comparison of other cell on the diagonal with one of the two cells just
checked;
Check that the line is of Xs or Os (not blanks);

Computing COMP1 - AQA GCE Mark Scheme 2010 June series

12

Return True if line of three symbols found on the 1st diagonal; R if value
would not actually be returned
All correct conditions for 2nd diagonal;
Return True if line of three symbols found on the 2nd diagonal; R if value
would not actually be returned

I. additional comparisons of cells – as long as they do not result in check for
three symbols in a line not working

Max 4 if diagonal check is inside a loop.

6

 35 ****SCREEN CAPTURE****
This is conditional on sensible code for 34

Mark as follows:
Screen capture showing winning message and three symbols in a line in
positions [1,1], [2,2], [3,3] // Screen capture showing winning message and
three symbols in a line in positions [1,3], [2,2], [3,1];

1

 36 ***SCREEN CAPTURE***
This is conditional on sensible code for 34

Mark as follows:
Screen capture showing winning message and three symbols in a line in
positions [1,1], [2,2], [3,3] // Screen capture showing winning message and
three symbols in a line in positions [1,3], [2,2], [3,1];

R. Same diagonal line as shown in part (i)

1

11 37 VB.NET
Else
 Console.WriteLine("A draw this time! ")
 PlayerOneScore = PlayerOneScore + 0.5
 PlayerTwoScore = PlayerTwoScore + 0.5
Endif

VB6
Else
 MsgBox ("A draw this time!")
 PlayerOneScore = PlayerOneScore + 0.5
 PlayerTwoScore = PlayerTwoScore + 0.5
End If

Pascal
Else
 Begin
 Writeln('A draw this time!');
 PlayerOneScore := PlayerOneScore + 0.5;
 PlayerTwoScore := PlayerTwoScore + 0.5;
 End;

Mark as follows:
At least one player’s score changed within the existing IF statement;

Computing COMP1 - AQA GCE Mark Scheme 2010 June series

13

A. if in THEN part of NoOfMoves=9 statement
Both scores increased by correct amount;

2

 38 ****SCREEN CAPTURE****
This is conditional on sensible answer for 37

Drawn board position with 9 symbols (as defined in preliminary material);
Messages saying players have score of 0.5; R. other scores

2

12 39 VB.NET
Dim Board(4, 4) As Char

VB6
Dim Board(1 to 4, 1 to 4) As String

Pascal
TBoard = Array[1..4,1..4] Of Char;

Mark as follows:
Existing declaration of Board modified correctly;

A. No change made as position 0 of array will be used (not Pascal / VB6) –
only accept if explanation is given.
A. 0..3 instead of 1..4 (Pascal)
A. 0 to 3 instead of 1 to 4 (VB6)

1

 40 VB.NET / VB6 / Pascal
If NoOfMoves = 16

Mark as follows: Value of 9 changed to 16;

1

 41 VB.NET / VB6
For Row = 1 To 4
 For Column = 1 To 4

Pascal
For Row := 1 To 4
 Do
 Begin
 For Column := 1 To 4

Mark as follows:
Outer FOR loop changed to iterate 4 times and
Inner FOR loop changed to iterate 4 times;

A. 0 to 3 instead of 1 to 4 – only if indicated 0th position would be used
in answer to 39.

1

Computing COMP1 - AQA GCE Mark Scheme 2010 June series

14

 42 VB.NET
Console.WriteLine(" | 1 2 3 4 ")
Console.WriteLine("--+-------- ")
For Row = 1 To 4
 Console.Write(Row & " | ")
 For Column = 1 To 4

VB6
BoardAsString = " | 1 2 3 4 "
 BoardAsString = BoardAsString & vbCrLf & "--+-------"
& vbCrLf
 For Row = 1 To 4
 BoardAsString = BoardAsString & Row & " | "
 For Column = 1 To 4

Pascal
Writeln(' | 1 2 3 4 ');
Writeln('--+---------');
For Row := 1 To 4
 Do
 Begin
 Write(Row, ' | ');
 For Column := 1 To 4
 Do
 Begin

Mark as follows:
Change message so that 4th column heading is shown;
Outer FOR loop changed to iterate 4 times and
Inner FOR loop changed to iterate 4 times;

A. 0 to 3 instead of 1 to 4 – only if indicated 0th position would be used
in answer to 39.

2

 43 ****SCREEN CAPTURE****
This is conditional on sensible answers for 39 and 42

displays 4 rows;
displays 4 columns;

2

 44 VB.NET / VB6
If XCoordinate < 1 Or XCoordinate > 4 Then ValidMove =
False
If YCoordinate < 1 Or YCoordinate > 4 Then ValidMove =
False

Pascal
If (XCoordinate < 1) Or (XCoordinate > 4) Then ValidMove
:= False;
If (YCoordinate < 1) Or (YCoordinate > 4) Then ValidMove
:= False;

Mark as follows:

Computing COMP1 - AQA GCE Mark Scheme 2010 June series

15

Change upper boundary to 4 for both X and Y coordinates;

A. Change lower boundary to 0 for both X and Y coordinates instead of
upper boundary change – only if indicated 0th position would be used in
answer to 39;

1

 45 VB.NET / VB6
For Row = 1 To 4
 If Board(2, Row) = Board(3, Row) And (Board(2, Row) =
Board(1, Row) Or Board(2, Row) = Board(4, Row)) and
Board(2, Row) <> " " Then xOrOHasWon = True
Next

Pascal
For Row := 1 To 4
 Do
 If (Board[2, Row] = Board[3, Row]) And ((Board[2,
Row] = Board[1, Row]) Or (Board[2, Row] = Board[4, Row]))
And (Board[2, Row] <> ' ')
 Then xOrOHasWon := True;

Mark as follows:
Change FOR loop so it iterates 4 times;
Board(4, Row); compared with Board(3, Row)/Board(2, Row);
Solution works for all 8 legal winning positions on the rows;

A. Two loops (both go from 1 to 4) – both loops need to be included in the
code shown by the candidate to get full marks
A. Additional IF statements, as long as logic is correct
Max 3 4 IF statements instead of a FOR loop – one IF statement for each
row in the grid
Max 2 if only works for four symbols in a row
Max 2 if solution detects a winning solution when it shouldn’t

A. Answers coordinates using 0 instead of 4 – only if indicated 0th position
would be used in answer to 39.

4

 46 ****SCREEN CAPTURE****
This is conditional on sensible answers for 45, 42 and 39.

Symbol shown in (2,4);
Winning message shown and three symbols in a horizontal line including a
symbol in position (2,4); R. if solution for 45 is for four symbols in a line, not
three

The two possible positions for full marks (could be O instead of X):

 X X X

Computing COMP1 - AQA GCE Mark Scheme 2010 June series

16

X X X

A. If candidate has used array position 0 instead of 4, accept a winning
position on either the bottom or top line of the board.

2

 47 Declare Board as a 3-dimensional array; Board(4,4,4) / /Board (6,4,4);

OR

Declare 6 (one for each surface); 4x4 arrays;

OR

Declare 4; 4x4 arrays;

NE. 3D

A. Answer that imply creating a new data type / using array structure that will
be used with the Board variable; that allows 64/96 cells to be represented;

2

Computing COMP1 - AQA GCE Mark Scheme 2010 June series

17

C Mark Scheme

Qu Part Marking Guidance Mar
6 16 #include <stdio.h>

#include <conio.h>

int NoOfGamesInMatch;
int NoOfGamesPlayed;
int PlayerOneScore;
int PlayerTwoScore;
char PlayerOneWinsGame;

void main(void){
 PlayerOneScore = 0;
 PlayerTwoScore = 0;
 printf("How many games?\n");
 scanf("%i",&NoOfGamesInMatch);

for(NoOfGamesPlayed=1;NoOfGamesPlayed<=NoOfGamesInMatch;NoOfGamesPlayed++){
 printf("Did Player One win the game (enter Y or N)?\n");
 flushall();
 scanf("%c",&PlayerOneWinsGame);
 if(PlayerOneWinsGame == 'Y'){
 PlayerOneScore = PlayerOneScore + 1;
 }
 else {
 PlayerTwoScore = PlayerTwoScore + 1;
 }
 }
 printf("%i\n",PlayerOneScore);
 printf("%i\n",PlayerTwoScore);
 getch();
}

9

7 26 RandomNo = rand() // whoStarts ='X' // whoStarts ='O';

1

9 31 int CheckValidMove(int XCoordinate, int YCoordinate,
char Board[4][4]){
 int validMove;
 validMove = 1;
 // check x coordinate is valid
 if ((XCoordinate<1) || (XCoordinate>3)){
 validMove = 0;
 }
 if ((YCoordinate<1) || (YCoordinate>3)){
 validMove = 0;
 }
 if validMove == 1{
 if (Board[XCoordinate][YCoordinate] != ' '){
 validMove = 0;
 }
 }
 return validMove;
}

5

Computing COMP1 - AQA GCE Mark Scheme 2010 June series

18

10 34 // check diagonals
 if((Board[1][1]==Board[2][2]) &&
(Board[1][1]==Board[3][3]) && (Board[2][2] !=' ')){
 xOrOHasWon = 1;
 }
 if((Board[1][3]==Board[2][2]) &&
(Board[3][1]==Board[2][2]) && (Board[2][2] !=' ')){
 xOrOHasWon = 1;
 }
 return xOrOHasWon;

6

11 37 else {
 printf("A draw this time\n");
 PlayerOneScore = PlayerOneScore + 0.5;
 PlayerTwoScore = PlayerTwoScore + 0.5;
 }

2

12 39 char Board[5][5];

1

 40 if(NoOfMoves == 16){
 GameHasBeenDrawn = 1;
}

1

 41 for(Row=1;Row<=4;Row++){
 for(Column=1;Column<=4;Column++){

1

 42 printf(" | 1 2 3 4\n");
printf("--+--------\n");
for(Row=1;Row<=4;Row++){
 printf("%i |",Row);
 for(Column=1;Column<=4;Column++){

2

 44 if ((XCoordinate<1) || (XCoordinate>4)){
 validMove = 0;
}
if ((YCoordinate<1) || (YCoordinate>4)){
 validMove = 0;
}

1

 45 for(Row=1;Row<=4;Row++){
 if((((Board[2][Row] == Board[3][Row]) && (Board[2][Row]
== Board[1][Row])) || ((Board[2][Row] == Board[4][Row])
&& (Board[2][Row] == Board[3][Row]))) && Board[2][Row]
!=' '){
 xOrOHasWon = 1;
 }

4

Computing COMP1 - AQA GCE Mark Scheme 2010 June series

19

C# Mark Scheme

Qu Part Marking Guidance Marks
6 16 using System;

using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace OsAndXsMatch
{
 class Program
 {
 static void Main(string[] args)
 {
 int PlayerOneScore = 0;
 int PlayerTwoScore = 0;
 int NoOfGamesPlayed;
 int NoOfGamesInMatch;
 char PlayerOneWinsGame;
 Console.Write("How many games?");
 NoOfGamesInMatch =
int.Parse(Console.ReadLine());
 for (NoOfGamesPlayed = 1; NoOfGamesPlayed <=
NoOfGamesInMatch; NoOfGamesPlayed++)
 {
 Console.Write("Did Player One win the
game (enter Y or N)?");
 PlayerOneWinsGame =
char.Parse(Console.ReadLine());
 if (PlayerOneWinsGame == 'Y')
 PlayerOneScore++;
 else
 PlayerTwoScore++;
 }
 Console.WriteLine(PlayerOneScore);
 Console.WriteLine(PlayerTwoScore);
 Console.ReadLine();
 }
 }
}

9

7 26 Random objRandom = new Random() // int RandomNo =
objRandom.Next(100) // WhoStarts = 'X' // WhoStarts =
'O';

1

9 31 public static bool CheckValidMove(int XCoordinate, int
YCoordinate, char[,] Board)
{
 bool ValidMove = true;

 if (XCoordinate < 1 || XCoordinate > 3)
 ValidMove = false;

Computing COMP1 - AQA GCE Mark Scheme 2010 June series

20

 if (YCoordinate < 1 || YCoordinate > 3)
 ValidMove = false;
 if (ValidMove)

if (Board[XCoordinate, YCoordinate] != ' ')
 ValidMove = false;
 return ValidMove;
} // end CheckValidMove

Alternative not using local Boolean variable:

public static bool CheckValidMove(int XCoordinate, int
YCoordinate, char[,] Board)
{
 if (XCoordinate < 1 || XCoordinate > 3 ||

 YCoordinate < 1 || YCoordinate > 3 ||
 Board[XCoordinate, YCoordinate] != ' ')
 return false;
 else
 return true;
} // end CheckValidMove

5

10 34 // check diagonals
if ((Board[1, 1] == Board[2, 2]) && (Board[2, 2] ==
Board[3, 3])
 && (Board[1, 1] != ' '))
 xOrOHasWon = true;
if ((Board[3, 1] == Board[2, 2]) && (Board[2, 2] ==
Board[1, 3])
 && (Board[3, 1] != ' '))
 xOrOHasWon = true;

6

11 37 else
{
 Console.WriteLine("A draw this time!");
 PlayerOneScore = PlayerOneScore + 0.5;
 PlayerTwoScore = PlayerTwoScore + 0.5;
}

2

12 39 public static char[,] Board = new char[5, 5];

1

 40 if (NoOfMoves == 16)

1

 41 for (Row = 0; Column <= 4; Row++)
{
 for (Column = 0; Column <= 4; Column++)
 {
 Board[Column, Row] = ' ';
 }

Computing COMP1 - AQA GCE Mark Scheme 2010 June series

21

}

1

 42 Console.WriteLine(" | 1 2 3 4");
Console.WriteLine("--+--------");
for (Row = 0; Row <= 4; Row++)
 {
 Console.Write((Row + 1).ToString() + " | ");
 for (Column = 0; Column <= 4; Column++)
 {

2

 44 bool ValidMove = true;

if (XCoordinate < 1 || XCoordinate > 4)
 ValidMove = false;
if (YCoordinate < 1 || YCoordinate > 4)
 ValidMove = false;
if (ValidMove)

if (Board[XCoordinate, YCoordinate] != ' ')
 ValidMove = false;
return ValidMove;

Alternative not using local boolean variable:

if (XCoordinate < 1 || XCoordinate > 4 ||

 YCoordinate < 1 || YCoordinate > 4 ||
Board[XCoordinate, YCoordinate] != ' ')

 return false;
else
 return true;

1

 45 // check rows
for (Row = 1; Row <= 4; Row++)
{
 if (Board[1, Row] == Board[2, Row] &&
 Board[2, Row] == Board[3, Row] &&
 Board[2, Row] != ' ')
 XorOHasWon = true;
 if (Board[2, Row] == Board[3, Row] &&

 Board[3, Row] == Board[4, Row] &&
 Board[2, Row] != ' ')

 XorOHasWon = true;
}

4

Computing COMP1 - AQA GCE Mark Scheme 2010 June series

22

Java Mark Scheme

Qu Part Marking Guidance Marks
6 16 package comp1_java_2010_v4a; //this is optional

public class Question6 {
 public static void main(String[] args) {
 int noOfGamesInMatch;
 int noOfGamesPlayed;
 int playerOneScore;
 int playerTwoScore;
 char playerOneWinsGame;
 Console console = new Console();

 playerOneScore = 0;
 playerTwoScore = 0;
 noOfGamesInMatch = console.readInteger("How many
games? ");
 for (noOfGamesPlayed = 1; noOfGamesPlayed <=
noOfGamesInMatch; noOfGamesPlayed++) {
 playerOneWinsGame = console.readChar("Did
player One win the game (enter Y or N)? ");
 if (playerOneWinsGame == 'Y') {
 playerOneScore++;
 } else {
 playerTwoScore++;
 } // end if/else
 } // end for noOfGamesPlayed
 console.writeLine(playerOneScore);
 console.writeLine(playerTwoScore);
 } // end Question6
}

9

7 26 Random objRandom = new Random() //
randomNo = objRandom.nextInt(100) // whoStarts = 'X' //
whoStarts = 'O'

1

9 31 boolean checkValidMove(int xCoordinate, int yCoordinate,
char[][] board) {
 boolean validMove = true;
 //check the x Coordinate is valid
 if (xCoordinate < 1 || xCoordinate > 3) validMove =
false;
 //check the y Coordinate is valid
 if (yCoordinate < 1 || yCoordinate > 3) validMove =
false;
 //check the cell is empty
 if (validMove) {
 if (board[xCoordinate][yCoordinate] != ' ')
validMove = false;
 } // end if
 return validMove;
} // end method checkValidMove

5

Computing COMP1 - AQA GCE Mark Scheme 2010 June series

23

10 34 if (board[1][1] == board[2][2] &&
 board[2][2] == board[3][3] &&
 board[1][1] != ' ') {
 xOrOHasWon = true;
 } // end if diagonal
 if (board[3][1] == board[2][2] &&
 board[2][2] == board[1][3] &&
 board[3][1] != ' ') {
 xOrOHasWon = true;
 } // end if other diagonal
 return xOrOHasWon;

6

11 37 } else {
 console.println("A draw this time!");
 playerOneScore = playerOneScore + 0.5f;
 playerTwoScore = playerTwoScore + 0.5f;
} // end if/else

2

12 39 char board[][] = new char[5][5]; 1

 40 if (noOfMoves == 16) {
 gameHasBeenDrawn = true;
}

1

 41 for (row = 1; row <= 4; row++) {
 for (column = 1; column <= 4; column++) {

1

 42 console.println(" | 1 2 3 4 ");
console.println("--+---------");
for (row = 1; row <= 4; row++) {
 console.write(" | ");
 for (column = 1; column <= 4; column++) {

2

 44 if (xCoordinate < 1 || xCoordinate > 4) validMove = false;
//check the y Coordinate is valid
if (yCoordinate < 1 || yCoordinate > 4) validMove = false;
//check the cell is empty

1

 45 for (row = 1; row <= 4; row++) {
 if (board[1][row] == board[2][row] &&
 board[2][row] == board[3][row] &&
 board[2][row] != ' ') {
 xOrOHasWon = true;
 } // end if
 if (board[2][row] == board[3][row] &&
 board[3][row] == board[4][row] &&
 board[row][2] != ' ') {
 xOrOHasWon = true;
 } // end if
} // end column

4

Computing COMP1 - AQA GCE Mark Scheme 2010 June series

24

PHP Mark Scheme

Qu Part Marking Guidance Marks
6 16 <?php

/* Question 6
*/
$PlayerOneScore = 0;
$PlayerTwoScore = 0;
$NoOfGamesInMatch = 0;
fwrite(STDOUT, "How many games?\n");
$NoOfGamesInMatch = intval(trim(fgets(STDIN)));
for ($NoOfGamesPlayed = 1; $NoOfGamesPlayed <=
$NoOfGamesInMatch; $NoOfGamesPlayed++) {
 fwrite(STDOUT, "Did Player One win the game (enter
Y or N)?");
 $PlayerOneWinsGame = trim(fgets(STDIN));
 if ($PlayerOneWinsGame == 'Y') {
 $PlayerOneScore++;
 } else {
 $PlayerTwoScore++;
 }
}
fwrite(STDOUT, $PlayerOneScore . "\n");
fwrite(STDOUT, $PlayerTwoScore . "\n");
?>

9

7 18 $Board // $PlayerOneName // $PlayerTwoName //
$PlayerOneScore // $PlayerTwoScore // $XCoord // $YCoord
// $ValidMove // $NoOfMoves // $GameHasBeenWon //
$GameHasBeenDrawn // $CurrentSymbol // $StartSymbol //
$PlayerOneSymbol // $PlayerTwoSymbol // $Answer;

1

 19 $Row // $Column // $ValidMove // $XorOHasWon //
$RandomNumber;

1

 23 $NoOfMoves // $Row // $Column;

 1

 24 $PlayerOneName // $PlayerTwoName //
$PlayerTwoSymbol // $StartSymbol // $RandomNumber;

 1

 26 $RandomNumber = rand(1, 100);

1

9 31 function CheckValidMove($XCoordinate, $Ycoordinate,
$Board){
 // check X coordinate is valid
 $ValidMove = true;
 if ($XCoordinate < 1 || $XCoordinate > 3) {
 $ValidMove = false;
 }
 if ($YCoordinate < 1 || $YCoordinate > 3) {
 $ValidMove = false;
 }

Computing COMP1 - AQA GCE Mark Scheme 2010 June series

25

 if ($ValidMove) {
 if ($Board[$XCoordinate][$YCoordinate] != '
')
 $ValidMove = false;
 }
 return $ValidMove;
}

5

10 34 if ($Board[1][1] == $Board[2][2] &&
 $Board[2][2] == $Board[3][3] &&
 $Board[2][2] != ' ')
 $XorOHasWon = true;
if ($Board[2][2] == $Board[3][1] &&
 $Board[2][2] == $Board[1][3] &&
 $Board[2][2] != ' ')
 $XorOHasWon = true;

6

11 37 else {
 fwrite(STDOUT, "A draw this time! \n");
 $PlayerOneScore = $PlayerOneScore + 0.5;
 $PlayerTwoScore = $PlayerTwoScore + 0.5;
}

2

12 39 No change necessary (as arrays in PHP dynamic)
$Board = array(array());

1

 40 if ($NoOfMoves == 16)

1

 41 for ($Row = 1; $Row <= 4; $Row++) {
 for ($Column = 1; $Column <= 4; $Column++) {

1

 42 fwrite(STDOUT, " | 1 2 3 4 \n");
fwrite(STDOUT, "--+---------\n");
for($Row = 1; $Row <= 4; $Row++) {
 fwrite(STDOUT, $Row . " |");
 for ($Column = 1; $Column <= 4; $Column++)
 .

2

 44 // check X coordinate is valid
$ValidMove = true;
if ($XCoordinate < 1 || $XCoordinate > 4) {
 $ValidMove = false;
}
// check Y coordinate is valid
if ($YCoordinate < 1 || $YCoordinate > 4) {
 $ValidMove = false;
}
// check the cell is empty
if ($ValidMove) {
 if ($Board[$XCoordinate][$YCoordinate] != ' ')

Computing COMP1 - AQA GCE Mark Scheme 2010 June series

26

 $ValidMove = false;
}
return $ValidMove;

1

 45 for ($Row = 1; $Row < 5; $Row++) {
if ($Board[1][$Row] == $Board[2][$Row] &&
 $Board[2][$Row] == $Board[3][$Row] &&
 $Board[2][$Row] != ' ')

$XorOHasWon = true;
if ($Board[2][$Row] == $Board[3][$Row] &&
 $Board[3][$Row] == $Board[4][$Row] &&
 $Board[2][$Row] != ' ')

 $XorOHasWon = true;
}

4

Computing COMP1 - AQA GCE Mark Scheme 2010 June series

27

Python Mark Scheme

Qu Part Marking Guidance Marks
6 16 Python 2.5

PlayerOneScore = 0
PlayerTwoScore = 0
NoOfGamesPlayed = 0
NoOfGamesInMatch = int(raw_input("How many games?"))
accept input(("How many games?")
for NoOfGamesPlayed in range(NoOfGamesInMatch):
 PlayerOneWinsGame = raw_input("Did Player One win
the game (enter Y or N)?")
 If PlayerOneWinsGame == 'Y':
 PlayerOneScore = PlayerOneScore + 1
 # accept PlayerOneScore += 1
 else:
 PlayerTwoScore = PlayerTwoScore + 1
 #accept PlayerTwoScore += 1
print PlayerOneScore
print PlayerTwoScore

Python 3.0
PlayerOneScore = 0
PlayerTwoScore = 0
NoOfGamesInMatch = int(input("How many games?"))
Accept:
print("How many games?")
NoOfGamesInMatch = int(input())
for NoofGamesPlayed in range(NoOfGamesInMatch):
 PlayerOneWinsGame = input("Did Player One win the
game (enter Y or N)?")
 If PlayerOneWinsGame == 'Y':
 PlayerOneScore = PlayerOneScore + 1
 # accept PlayerOneScore += 1
 else:
 PlayerTwoScore = PlayerTwoScore + 1
 # accept PlayerTwoScore += 1
print(PlayerOneScore)
print(PlayerTwoScore)

A. NoOfGamesPlayed = 0

9

7 26 RandomNo = random.randint(0, 100) //
WhoStarts = 'X' // WhoStarts = 'O';

1

9 31 def CheckValidMove(XCoordinate, YCoordinate, Board):
 ValidMove = True
 # Check x coordinate is valid
 if (XCoordinate <1) or (XCoordinate > 3):
 ValidMove = False
 if (YCoordinate <1) or (YCoordinate > 3):
 ValidMove = False

Computing COMP1 - AQA GCE Mark Scheme 2010 June series

28

 if (ValidMove == True):
 if (Board[XCoordinate][YCoordinate] != ' '):
 ValidMove = False
 return ValidMove

5

10 34 # check diagonals
if (Board[2][2] == Board[3][3]) and (Board[2][2] ==
Board[1][1]) and (Board[2][2] != ' '):
 xOrOHasWon = True # accept return True
if (Board[2][2] == Board[3][1]) and (Board[2][2] ==
Board[1][3]) and (Board[2][2] != ' '):
 xOorOHasWon = True # accept return True

6

11 37 Python 2.5
 else:
 print "A draw this time!"
 PlayerOneScore += 0.5 # accept
PlayerOneScore = PlayerOneScore + 0.5
 PlayerTwoScore += 0.5

Python 3.0
 else:
 print("A draw this time!")
 PlayerOneScore += 0.5 # accept
PlayerOneScore = PlayerOneScore + 0.5
 PlayerTwoScore += 0.5

2

12 39 Board = [[0,0,0,0,0],
 [0,0,0,0,0],
 [0,0,0,0,0],
 [0,0,0,0,0],
 [0,0,0,0,0],
]

1

 40 if NoOfMoves == 16:

1

 41 def ClearBoard(Board):
 for Row in range(1,5):
 for Column in range(1,5):
 Board[Column][Row] = ' '
A. range(4) if candidate has used 0 for array position instead of 4.

1

 42 Python 2.5
def DisplayBoard(Board):
 print ' | 1 2 3 4 '
 print '--+---------'
 for Row in range(1,5):
 print str(Row) + '| ',
 for Column in range(1,5):
 print Board[Column][Row]

Computing COMP1 - AQA GCE Mark Scheme 2010 June series

29

 print
 print '\n'

Python 3.0
def DisplayBoard(Board):
 print(' | 1 2 3 4 ')
 print('--+---------')
 for Row in range(1,5):
 print(Row, '|', end=' ')
 for Column in range(1,5):
 print(Board[Column][Row],end=" ")
 print()
 print('\n')
A. range(4) if candidate has used 0 for array position instead of 4.

2

 44 def CheckValidMove(XCoordinate, YCoordinate, Board):
 ValidMove = True
 if (XCoordinate <1) or (XCoordinate > 4):
 ValidMove = False
 if (YCoordinate <1) or (YCoordinate > 4):
 ValidMove = False
 if (ValidMove == True) and
(Board[XCoordinate][YCoordinate] != ' '):
 ValidMove = False
 return ValidMove

1

 45 if (Board[2][Row] == Board[3][Row]) and (Board[2][Row]
== Board[1][Row]) or (Board[2][Row] == Board[4][Row])
and (Board[2][Row] != ' '):
 xOrOHasWon = True

4

 47 Description of further list nesting (similar to 3d array)

2

