| Surname             |  |  | Othe | er Names |         |            |  |  |
|---------------------|--|--|------|----------|---------|------------|--|--|
| Centre Number       |  |  |      |          | Candida | ate Number |  |  |
| Candidate Signature |  |  |      |          |         |            |  |  |



General Certificate of Education January 2008 Advanced Subsidiary Examination

ASSESSMENT and QUALIFICATIONS
ALLIANCE

COMPUTING CPT1
Unit 1 Computing Systems, Programming

Monday 14 January 2008 1.30 pm to 3.00 pm

and Networking Concepts

You will need no other materials.

You may use a calculator.

Time allowed: 1 hour 30 minutes

### **Instructions**

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Answer the questions in the spaces provided.
- Show all your working.
- Do all rough work in this book. Cross through any work you do not want to be marked.

### **Information**

- The maximum mark for this paper is 65.
- The marks for questions are shown in brackets.
- The use of brand names in your answers will **not** gain credit.
- You are reminded of the need for good English and clear presentation in your answers.

| For Examiner's Use  |                  |          |      |  |  |  |  |
|---------------------|------------------|----------|------|--|--|--|--|
| Question            | Mark             | Question | Mark |  |  |  |  |
| 1                   |                  | 9        |      |  |  |  |  |
| 2                   |                  | 10       |      |  |  |  |  |
| 3                   |                  |          |      |  |  |  |  |
| 4                   |                  |          |      |  |  |  |  |
| 5                   |                  |          |      |  |  |  |  |
| 6                   |                  |          |      |  |  |  |  |
| 7                   |                  |          |      |  |  |  |  |
| 8                   |                  |          |      |  |  |  |  |
| Total (Col          | Total (Column 1) |          |      |  |  |  |  |
| Total (Column 2)    |                  |          |      |  |  |  |  |
| TOTAL               |                  |          |      |  |  |  |  |
| Examiner's Initials |                  |          |      |  |  |  |  |



# Answer all questions in the spaces provided.

- **1 Table 1** lists some components of a computer system. Put **one** tick on each row to describe each component as either:
  - software
  - hardware
  - hardware and software.

### Table 1

| Component                                                                          | Software | Hardware | Hardware and Software |
|------------------------------------------------------------------------------------|----------|----------|-----------------------|
| An application program                                                             |          |          |                       |
| A printed circuit board which controls the wash programme inside a washing machine |          |          |                       |
| Main memory chips in the PC                                                        |          |          |                       |

(3 marks)

| 2 | You want to improve the performance of your PC by upgrading certain components, w | hilst |
|---|-----------------------------------------------------------------------------------|-------|
|   | retaining the same motherboard.                                                   |       |

What upgraded/additional components would bring about the following improvements? Your components for parts (a), (b) and (c) **must** be different.

| Tour | components for parts (a), (b) and (c) must be different.                                                                             |
|------|--------------------------------------------------------------------------------------------------------------------------------------|
| (a)  | Increasing the speed at which application programs are executed.                                                                     |
|      | Component:                                                                                                                           |
|      | Explanation:                                                                                                                         |
|      | (2 marks)                                                                                                                            |
| (b)  | Avoiding the need to continually archive picture and music files to CD storage.                                                      |
|      | Component:                                                                                                                           |
|      | Explanation:                                                                                                                         |
|      |                                                                                                                                      |
|      | (2 marks)                                                                                                                            |
| (c)  | Having several additional devices connected at the same time to your computer. For example, a digital camera and memory card reader. |
|      | Component:                                                                                                                           |
|      | Explanation:                                                                                                                         |
|      | (2 marks)                                                                                                                            |



6

**3** Figure 1 shows a very small part of a sound wave recorded through a microphone connected to a computer.



The dots each represent a recorded measurement of the sound wave. The recorded measurements are stored in main memory shown in **Table 2**, with the first measurement stored in main memory location 700.

Question 3 continues on the next page





Table 2

| Memory<br>Address | Measurement |
|-------------------|-------------|
| 700               | 0001 0100   |
| 701               | 0011 1100   |
| 702               | (e)         |
| 703               | 1011 1101   |
| 704               | 1110 0011   |
| 705               | 1111 0000   |
| 706               | 1101 1100   |
| 707               | 1010 0000   |
| 708               | 0111 0111   |
| 709               | 0110 0100   |

| (a) |       | e <b>two</b> items of essential software which <b>must</b> be in the main memory at the time recording process takes place. |
|-----|-------|-----------------------------------------------------------------------------------------------------------------------------|
|     | 1     |                                                                                                                             |
|     | 2     |                                                                                                                             |
| (b) | (i)   | Explain what is meant by the <b>sampling rate</b> .                                                                         |
|     |       | (1 mark)                                                                                                                    |
|     | (ii)  | Study <b>Figure 1</b> and state what the sampling rate is for this recording.                                               |
|     |       | (1000 milliseconds = 1 second).                                                                                             |
|     |       | (1 mark)                                                                                                                    |
| (c) | Stud  | y Table 2. How many bits are allocated to each sample?                                                                      |
|     | ••••• | (1 mark)                                                                                                                    |
| (d) | (i)   | State <b>one</b> advantage of increasing the number of bits allocated to each sample.                                       |
|     |       | (1 mark)                                                                                                                    |
|     | (ii)  | State <b>one</b> disadvantage of increasing the number of bits allocated to each sample.                                    |
|     |       | (1 mark)                                                                                                                    |



|   | (1 mark                                                                                                                                                                |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ( | In <b>Table 2</b> each of the binary values represents part of a sound file. Give <b>three</b> other possible interpretations of one or more bytes held in main memory |
|   | when the computer is being used for any application (excluding part of a picture or other media file).                                                                 |
| ] | 1                                                                                                                                                                      |
| 2 | 2                                                                                                                                                                      |
| 3 | 3                                                                                                                                                                      |
|   | (3 marks                                                                                                                                                               |

Turn over for the next question

Turn over ▶



4 Figure 2 shows three different programs which have been developed using different generations of programming language.

Figure 2
Program 1

# If Sales > 10000 Then BonusPayment :=True etc. etc. Procedure InputNewData Procedure ToOutputFile etc ...

Program 2

|       | _    |       |
|-------|------|-------|
| Move  | #0,  | R1    |
| Add   | R1,  | R2    |
| Store | R1,  | 0197  |
| Move  | 0198 | 3, R3 |
| Add   | R2,  | R3    |
| Cmp   | R3,  | #1662 |
| Bne   | 0988 | 3     |
|       |      |       |
| etc   |      |       |
|       |      |       |

Program 3

| 1000 0101 |  |
|-----------|--|
| 1010 1111 |  |
| 1010 1111 |  |
| 1110 0001 |  |
| 1010 1111 |  |
|           |  |
|           |  |
| etc       |  |
|           |  |

The above programs were written for different tasks.

| (a) | What generation of programming language was used for Program 1? |
|-----|-----------------------------------------------------------------|
|     |                                                                 |
|     |                                                                 |

(1 mark)

- (b) Indicate which program was most likely to have been written for:
  - (i) controlling a new hardware device.

| (1 | mark) |
|----|-------|

(ii) a payroll application.

| <br> |          |
|------|----------|
|      | (1 mark) |

(c) Program 1, Program 2 and Program 3 may require translation before each can be executed.

Table 3

|           | Assembler | Compiler | None |
|-----------|-----------|----------|------|
| Program 1 |           |          |      |
| Program 2 |           |          |      |
| Program 3 |           |          |      |

Put one tick on each row in Table 3 to indicate the translator software required.

(3 marks)



| (d) | Describe how <b>interpreter</b> software enables a program written in a high level language to be executed.                     |
|-----|---------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                                 |
|     |                                                                                                                                 |
|     | (2 marks)                                                                                                                       |
| (e) | A friend gives you a copy of a freeware <b>assembler</b> . Why might you not be able to use this successfully on your computer? |
|     |                                                                                                                                 |
|     | (1 mark)                                                                                                                        |

Figure 3 shows some of the drawing objects available with a vector graphics drawing 5 software package.

Figure 3

| C                     | 0                   |                     |   |                   |
|-----------------------|---------------------|---------------------|---|-------------------|
| Center drag<br>circle | Circle              | Blipse              |   |                   |
|                       | 4                   | 3                   | _ | Object 1          |
| Right<br>triangle     | Cross               | Rectangle           |   | 5090 • 510 Strice |
|                       |                     |                     |   | 200 102           |
| Shadowed<br>box       | 3-D box             | Rounded rectangle   | / | Object 2          |
|                       | $\leftarrow$        | $\bowtie$           |   |                   |
| Rounded square        | 45 degree<br>single | 60 degree<br>single |   |                   |

|      | 1                                                                                                                                    |
|------|--------------------------------------------------------------------------------------------------------------------------------------|
|      | 2                                                                                                                                    |
| (ii) | When a designer creates a drawing, the size of various objects is often increased/decreased/moved as the drawing is being developed. |
|      | Explain why no distortion occurs in vector graphics when the size of various objects is changed.                                     |
|      |                                                                                                                                      |
|      | (2 marks)                                                                                                                            |

Turn over ▶



(i) Name two

(iii) With vector graphics software, each new drawing is created as a set of vectored objects. Each drawing is created and saved in a file format specific to that brand of software. The software has an 'export' facility so that a bitmapped version of any drawing can be produced which can then be used as appropriate e.g. included in a word processed document.

| ereates and saves a bitmapped file? |     |
|-------------------------------------|-----|
|                                     |     |
|                                     |     |
| (1 mar                              | ·k) |

(b) Bitmapped software saves the picture as pixels, with a range of different possible colour resolutions as shown in **Figure 4**.

Figure 4



| (i)   | If the graphic is saved as shown as a '256 color bitmap', how many bytes will be used to store each pixel?                                   |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------|
|       | (1 mark)                                                                                                                                     |
| (ii)  | A picture is downloaded from a camera-phone and saved as a '256 color bitmap'. The picture has a width of 1280 pixels and height 768 pixels. |
|       | What is the file size in Kilobytes?                                                                                                          |
|       | (1 mark)                                                                                                                                     |
| (iii) | The same picture as in part (ii) is later loaded into bitmapped software on a PC and saved to a new file as a '16 color bitmap'.             |
|       | What is the size of this file in Kilobytes?                                                                                                  |
|       |                                                                                                                                              |



8

(1 mark)

| Figure 5                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                        |
| 0(0)200(0)200(                                                                                                                         |
| Figure 5 shows a port on the back of a PC which is used for the parallel transmission of data; typically between the PC and a printer. |
| More than eight of the port lines are used during a data transfer.                                                                     |
| State <b>two different</b> uses for the lines.                                                                                         |
| 1                                                                                                                                      |
| 2                                                                                                                                      |
| When would it be <b>inappropriate</b> to use parallel data transmission, even when the communicating device has a parallel port?       |
|                                                                                                                                        |
| (1 mark)                                                                                                                               |
|                                                                                                                                        |
| 1                                                                                                                                      |

Turn over ▶



6

- 7 Cars over three years old have to pass a roadworthy test called the MOT. Various categories are tested and for this question they have been simplified to:
  - Brakes
  - Steering
  - Tyres
  - Bodywork.

A car passes the MOT test – in this simplified scenario – if it passes all four categories.

Data for a single car is stored as a string consisting of the digit characters '0' and '1' e.g. '1110'.

- '1' denotes a category pass
- '0' denotes a category fail.

The order of the categories is as shown above. For example, the data '1110' describes a car which passed on brakes, steering and tyres, but failed on bodywork.

The built-in function SingleCharacter is to be used in the algorithm which follows, and is described in the help files as follows:

```
SingleCharacter(ThisString: String; ThisPosition: Integer): Char;
```

Returns the single character at position ThisPosition in the string ThisString.

E.g. Result := SingleCharacter('1110', 4) would return and assign '0' to Result.

The following incomplete algorithm is designed to calculate whether a single car has passed or failed.

The identifier list for variables used by the algorithm is shown in **Table 4**.



# (a) Complete **A**, **B** and **C** in the algorithm.

(b) Complete the data types and comment  $-\mathbf{D}$ ,  $\mathbf{E}$  and  $\mathbf{F}$  – in **Table 4**.

The data types should be selected from those shown in **Table 5**.

Table 4

| Variable     | Data Type | Comment                    |
|--------------|-----------|----------------------------|
| Position     | <b>D</b>  | E                          |
| NextCar      | String    | Data for a single car      |
| NextCategory | F         | Data for a single category |
| CarFailed    | Boolean   | Result indicator           |

(3 marks)

Table 5

| Data type | Explanation                   |
|-----------|-------------------------------|
| Integer   | Whole number                  |
| Real      | Number with a fractional part |
| String    | Zero or more characters       |
| Char      | Single character              |
| Boolean   | True/False values only        |



|   |                                                         |      |        |       |        |       |             |       |        |        |              |        |        |   |   | (1 1 |
|---|---------------------------------------------------------|------|--------|-------|--------|-------|-------------|-------|--------|--------|--------------|--------|--------|---|---|------|
| ) | The                                                     | comp | uter s | ysten | ı also | store | s <b>BC</b> | D nu  | mber   | s usii | ng <b>tw</b> | o byt  | es.    |   |   |      |
|   |                                                         | -    |        | -     |        |       |             |       |        |        |              |        |        |   |   |      |
|   | (i) Show the BCD bit pattern for the denary number 195. |      |        |       |        |       |             |       |        |        |              |        |        |   |   |      |
|   |                                                         |      |        |       |        |       |             |       |        |        |              |        |        |   |   |      |
|   |                                                         |      |        |       |        |       |             |       |        |        |              |        |        |   |   | (1)  |
|   | (ii)                                                    | The  | follo  | wing  | is not | a val | id BO       | CD re | nrese  | ntatio | n. E         | xnlair | ı why  | r |   |      |
|   | (11)                                                    |      | 10110  |       |        | u (u) |             | ,     | proso. |        |              | - Piun | 1 1111 | • |   |      |
|   | 1                                                       | 0    | 0      | 0     | 0      | 0     | 0           | 1     | 1      | 0      | 1            | 0      | 0      | 1 | 0 | 0    |



| netw | ork.   | search tree is used by software to store and then search for user names on a College                   |
|------|--------|--------------------------------------------------------------------------------------------------------|
| The  | follow | ving are the first seven user names to join the tree:                                                  |
|      | Polla  | ardJ, AtkinsP, RogersG, AbbottJ, SearleF, CollinsK, RuddleA                                            |
| (a)  | Sket   | ch the tree structure.                                                                                 |
|      |        |                                                                                                        |
|      |        |                                                                                                        |
|      |        |                                                                                                        |
|      |        |                                                                                                        |
|      |        |                                                                                                        |
|      |        |                                                                                                        |
|      |        |                                                                                                        |
|      |        |                                                                                                        |
|      |        | (2 marks)                                                                                              |
| (b)  | The    | tree is to be searched for various user names.                                                         |
|      | (i)    | The task is to search for the user name <b>CollinsK</b> . List in order the nodes visited.             |
|      |        |                                                                                                        |
|      |        | (1 mark)                                                                                               |
|      | (ii)   | A second search is done to find the user name <b>RuddleA</b> . How many comparisons does this require? |
|      | (ii)   | A second search is done to find the user name <b>RuddleA</b> . How many                                |

Turn over for the next question

Turn over ▶



9

- 10 A firm selling double glazing employs three sales staff. Each person is given a sales target for each of the four quarters of the year.
  - Quarter 1 January March
     Quarter 2 April June
     Quarter 3 July September
  - Quarter 4 October December

Based on all the sales made, the data in **Table 6** is produced showing whether or not each sales person achieved their target sales for each quarter. Each value is stored as a single character 'Y' (sales target met) or 'N' (sales target not met).

The columns represent each quarter, each row represents a salesperson.

Table 6

|     | Target |     |     |     |  |  |
|-----|--------|-----|-----|-----|--|--|
|     | [1]    | [2] | [3] | [4] |  |  |
| [1] | Y      | N   | Y   | N   |  |  |
| [2] | N      | N   | Y   | Y   |  |  |
| [3] | N      | N   | N   | N   |  |  |

(a) What data structure could be used in a programming language for organising the data shown in **Table 6**?

.....(1 mark)

(b) One of the data values in **Table 6** has been emboldened. What does this value represent?

(1 mark)

(c) The following algorithm processes the data shown in **Table 6**. Trace the execution of the algorithm by completing **Table 7**.



# Table 7

| Person | Quarter | Target[Person, Quarter] | [1]   | NewA | rray<br>[3] | [4] |
|--------|---------|-------------------------|-------|------|-------------|-----|
| reison |         | rarget[rerson, Quarter] | [ + ] | [2]  | [3]         | [4] |
|        | 1       |                         |       |      |             |     |
|        |         |                         |       |      |             |     |
|        |         |                         |       |      |             |     |
|        |         |                         |       |      |             |     |
|        |         |                         |       |      |             |     |
|        |         |                         |       |      |             |     |
|        |         |                         |       |      |             |     |
|        |         |                         |       |      |             |     |
|        |         |                         |       |      |             |     |
|        |         |                         |       |      |             |     |
|        |         |                         |       |      |             |     |
|        |         |                         |       |      |             |     |
|        |         |                         |       |      |             |     |
|        |         |                         |       |      |             |     |
|        |         |                         |       |      |             |     |
|        |         |                         |       |      |             |     |

(6 marks)

| (d) | Explain what numbers are being calculated and stored in the NewArray data structure. |
|-----|--------------------------------------------------------------------------------------|
|     |                                                                                      |
|     |                                                                                      |
|     |                                                                                      |
|     | (2 marks)                                                                            |

10

END OF QUESTIONS



There are no questions printed on this page

Do not write on this page

Copyright © 2008 AQA and its licensors. All rights reserved.

