

klm

COMPUTING COMP1/PM/JA

Unit 1 Problem Solving, Programming, Data Representation and
 Practical Exercise

Preliminary Material

To be given to candidates on or after Wednesday 1 April 2009

Information
• This Preliminary Material comprises

o Instructions to Candidates,
o a Data File and a
o Skeleton Program for Java which your teacher will supply.

You must only use the version of the Skeleton Program supplied by your teacher.
• Candidates are advised to familiarise themselves with the Preliminary Material

before the examination.
• This Preliminary Material will be made available to you again in the examination.

You must not take any copy of the Preliminary Material or any other material into
the examination room. Your teacher will provide you with access to these
electronically at the start of the examination.

 COMP1/PM/JA

General Certificate of Education
Advanced Subsidiary Examination
June 2009

2

 Instructions to Candidates

Format of the COMP1 Examination

The question paper is divided into four sections and a recommendation is given to candidates as
to how long to spend on each section. Below are the recommended timings for the 2009
examination.

SECTION A
You are advised to spend no more than 25 minutes on this section.
Questions will examine the specification content not specific to the Preliminary Material.

SECTION B
You are advised to spend no more than 20 minutes on this section.
Candidates will be required to write a new program from scratch.
Questions will refer to the Preliminary Material (excluding the Skeleton Program).

SECTION C
You are advised to spend no more than 20 minutes on this section.
Questions will refer to the Preliminary Material (including the Skeleton Program) but no
coding will be required.

SECTION D
You are advised to spend no more than 55 minutes on this section.
Questions will use the Skeleton Program and may require the Data File.

Electronic Answer Document

Answers for all questions for all four sections must be written into the word processed document
made available to the candidate at the start of the examination and referred to in the question
paper rubric as the Electronic Answer Document.

Preparation for the Examination

For your programming language you should ensure that you are familiar with:

• this Preliminary Material, including the Skeleton Program.

For your programming language, you should be familiar with:

• the built-in functions available for manipulating string data
• a method/function for generating a random number
• calculating from this random number an integer within a specified range
• file handling commands for text files made up of several lines of text.

__

M/Jun09/COMP1

3

“Guess the Word/Phrase Game”

The Skeleton Program in this Preliminary Material is for a game based on the game of
“Hangman” in which the user is given a certain number of letter guesses to guess a chosen word
or phrase.

This exercise will not require the display of a gallows!

The game starts with the input by the setter of a word or phrase of at least 10 characters chosen
from a set of characters consisting of the uppercase letters of the alphabet and the <Space>
character. You may assume that the setter never sets a word or phrase with more than 20
characters.

The output device, i.e. the screen, then displays a row of asterisks (‘*’) corresponding to every
letter in the word or phrase and a space for every space.

The game will not use words/phrases containing other characters, e.g. hyphens, apostrophes or
digits (0, 1, 2, …. 9).

A second person, the user, must then enter a letter that they think could be present in the setter’s
word or phrase or if they think that they recognise the word or phrase, they enter this word or
phrase.

In each of these cases, what the user has done is make a guess.

If the letter guess is correct, the row of asterisks displays again with the guessed letter replacing
one or more asterisks in the corresponding positions that this letter appears in the word/phrase.

If the word/phrase guess is correct, the game is over.
A message displays which states, “You have guessed correctly.”

If either guess is incorrect, the row of asterisks displays again with no change.

Restrictions

Two people are required to play this game, a setter and a user.

The setter inputs the word/phrase to be guessed. The user’s role is to guess the word/phrase
either directly by submitting the word/phrase or indirectly by guessing its letters. The user must
not have sight of the word/phrase before playing the game.

The Skeleton Program does not store or display all letters that the user enters (history of letters
entered), only those that are correct guesses.

The Skeleton Program in its present form does not allow the user to attempt a guess of the
complete word/phrase.

The game allows the user to make an unlimited number of letter guesses.

The letter case of the user’s guess must match the word/phrase’s letter case which is upper case.

4

Outline Design

The game begins when a new word or phrase is set. For the purpose of the design a phrase is
considered to consist of one or more words.

The Structured English description of an algorithm for playing the game is as follows:

INPUT word/phrase
check number of characters in word/phrase
IF acceptable
 THEN
 DO
 OUTPUT word/phrase with letters not yet guessed masked by asterisks
 INPUT next letter guess
 IF letter is present
 THEN update values of variables
 ENDIF
 LOOP UNTIL all letters guessed
 ELSE OUTPUT "Not enough letters"
ENDIF

Variables

The main variables used are as follows:

Identifier Data Type Purpose

NewPhrase String
The word/phrase entered by the
setter

GuessStatusArray Array[1..20] of Char

Stores:
• an <Asterisk> in each position

not yet guessed
• the letters in positions that

have been guessed

IndividualLettersArray1 Array[1..20] of Char

Stores:
• the individual characters from

NewPhrase
• any <Space> character(s) in

NewPhrase are stored as a
<Space>

Note: The programming language used to code the game will determine the letter case for each
identifier, and so may not match exactly the identifiers shown in the table above.

1 The IndividualLettersArray is only needed when the programming language does not support
direct access to the individual letters of NewPhrase.

__

M/Jun09/COMP1

5

Guessing a Letter

The data types used by the various programming language Skeleton Programs differ slightly.

• All languages store the setter's word/phrase in a variable NewPhrase

• Languages such as Pascal, C, PHP and C# permit access to individual characters of the
string as follows:

E.g.
NewPhrase := 'DERBY COUNTY' ;
NewPhrase[1] gives 'D', NewPhrase[4] gives 'B'.

• Other languages such as Visual Basic.Net are unable to access the individual letters of

NewPhrase directly.
An array IndividualLettersArray is used to store the letters to permit access to
individual letters as follows:

NewPhrase = "DERBY COUNTY"
Access to the first and fourth letters is made possible as follows:
IndividualLettersArray[1] gives 'D'.
IndividualLettersArray[4] gives 'B'.

Figure 1 shows the contents of the NewPhrase / IndividualLettersArray for the
phrase "COMPUTING EXAM".
NewPhrase is used for the languages which support access to individual characters.

All solutions store the letter guesses in array GuessStatusArray.
Figure 2 shows the contents of the array GuessStatusArray before the user has made any
guesses.

Figure 3 shows the contents of the array GuessStatusArray after the user has guessed the
letters 'E', 'A', 'W', 'P', 'C', 'U' in that order.
Note: the unsuccessful guess 'W' is not stored.

6

 Figure 1 Figure 2 Figure 3

 NewPhrase /
IndividualLettersArray GuessStatusArray GuessStatusArray

1 C 1 * 1 C

2 O 2 * 2 *
3 M 3 * 3 *
4 P 4 * 4 P

5 U 5 * 5 U
6 T 6 * 6 *
7 I 7 * 7 *

8 N 8 * 8 *
9 G 9 * 9 *
10 <Space> 10 <Space> 10 <Space>

11 E 11 * 11 E
12 X 12 * 12 *

13 A 13 * 13 A
14 M 14 * 14 *
: : : : : :
: : : : : :
: : : : : :

20 20 20

__

M/Jun09/COMP1

7

Possible Additional Requirement

The Skeleton Program does not display every letter that has been entered; it only displays
correctly guessed letters.

Consider how the letters entered during the game could be stored. You need only consider the
two suggestions shown below.

Suggestion 1
Use a one-dimensional array LettersGuessedArray2, Figure 4, with each array cell
corresponding to a letter of the alphabet.

Figure 4

Index 1 2 3 4 5 6 7 8 9 25 26
LettersGuessedArray2

For example:
LettersGuessedArray[4] stores an indicator that the user entered the letter 'D'.

Suggestion 2
Use a one-dimensional array LettersGuessedArray, Figure 5, as follows:
Each letter entered is stored in this array at the next available cell.

For example:
LettersGuessedArray[1] stores the entered letter 'E',
LettersGuessedArray[2] stores the entered letter 'A' because the user entered the letter
'E' first followed by the letter 'A'.

Figure 5

Index 1 2 3 4 5 6 7 8 9 25 26
LettersGuessedArray2 E A

An entered letter is never stored more than once.

Copyright © 2009 AQA and its licensors. All rights reserved.

2 Your chosen programming language may use arrays with a lower bound value of 0.
If so, then assume that LettersGuessedArray[0] is not used.

