Surname
Other Names

Centre Number

Candidate Number
2

-
 шјес cbac

GCE AS/A Level

2500U10-1 - NEW AS

COMPUTER SCIENCE - Unit 1

Fundamentals of Computer Science

A.M. MONDAY, 6 June 2016

2 hours

For Examiner's use only		
	Maximum Mark	Mark Awarded
Total	100	

ADDITIONAL MATERIALS

The use of a calculator is permitted in this examination.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Answer all questions.
Write your name, centre number and candidate number in the spaces at the top of this page.
Write your answers in the spaces provided in this booklet. If you run out of space, use the continuation page at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
The total number of marks available is 100 .
Assessment will take into account the quality of written communication used in your answers.

Answer all questions.

1. The following algorithm checks if the numbers entered are even or odd numbers.
```
Start Procedure EvenOdd
numberstocheck is integer
num is integer
input numberstocheck
for i = 1 To numberstocheck
    input num
    if num MOD 2 = 0 Then
        output num & " is an even number"
    else
        output num & " is an odd number"
    end if
next i
1 7 \text { End Procedure}
```

16
(a) Explain the role of MOD in the algorithm above.
\qquad
\qquad
\qquad
(b) Using an example from the algorithm, describe the purpose of selection.
\qquad
\qquad
\qquad
(c) Using an example from the algorithm, describe the purpose of repetition.
\qquad
\qquad
\qquad
2. Complete the following truth table:

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	$\overline{\boldsymbol{A}}$	B.C	$\overline{\boldsymbol{A}}+\boldsymbol{B} . \boldsymbol{C}$	$\overline{\boldsymbol{A}} .(\mathbf{A}+\boldsymbol{B} . \mathbf{C})$
1	1	1				
1	0	1				
0	1	1				
0	0	1				

3. Describe the function of the main components of the Von Neumann CPU architecture.
\qquad
4. Describe six Integrated Development Environment (IDE) tools used in the development and
debugging of programs.
[6]

Examiner
\qquad
(b) Describe what is meant by a data collision on a bus network and how such collisions should be dealt with.
6. (a) State the meaning of the following terms:
(i) Byte.
\qquad
\qquad
\qquad
(ii) Word.
\qquad
\qquad
\qquad
(b) Convert the hexadecimal numbers $2 \mathrm{~A}_{16}$ and BB_{16} into two binary numbers and, using binary addition, calculate the binary number that would result from adding them.

You must show all of your working.
(c) Using an example, describe two's complementation in an 8 bit register.
\qquad
\qquad
\qquad
\qquad
\qquad
(d) In a certain computer system, real numbers are stored in floating point form using two's complementation, an 8 bit mantissa and a 4 bit exponent.

The following is a floating point representation of a real number:

Mantissa

0	0	1	0	1	0	0	0

Exponent

0	0	1	1

Calculate the denary value of the mantissa and exponent, and convert this floating point number into a denary number.
(e) Using the number 26.8_{10} as an example, describe truncation and rounding, and their
effect upon accuracy.

Examiner only
\qquad
8. Write a binary search algorithm, using pseudo-code, for the following array.
myArray

23	34	39	42	47	56	61
(0)	(1)	(2)	(3)	(4)	(5)	(6)

Your algorithm should output the position of the SearchValue if it is found or a suitable message if the SearchValue is not present in the array.

Your algorithm should be written using self-documenting identifiers.
\qquad
9. Giving an example, describe standard modules and their benefits.
-. Ging an exampe, descibe stand modul
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
10. Clearly showing each step, simplify the following Boolean expression:

$$
A \cdot(A+C)+C \cdot(A+B)
$$

11. A university consists of a number of departments. Each department offers several courses. A number of modules make up each course. Students enrol on a particular course and take modules for that course.

Draw an entity relationship diagram to represent this situation.

BLANK PAGE

12. (a) Compare two methods of changeover that a systems analyst may suggest to an
organisation.
[10]
(b) A systems analyst produces maintenance documentation.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
13. A large organisation wishes to back up the data stored on its network on a daily basis.

Explain a suitable back up procedure that the organisation could use and compare three different types of secondary storage devices on which the data can be stored.

You should draw on your knowledge, skills and understanding from a number of areas across your Computer Science course when answering this question.
\qquad

For continuation only.

