Cambridge International AS & A Level Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

COMPUTER SCIENCE

Paper 3 Advanced Theory SPECIMEN MARK SCHEME 9608/03 For Examination from 2015

1 hour 30 minutes

www.tiremepapers.com

MAXIMUM MARK: 75

This document consists of **5** printed pages and **1** blank page.

1	(a) (i)	+13 <i>mark as follows:</i> Exponent: +4 // move the pattern four places Mantissa: +13/16 // 0.1101 Answer: 13/16 × 2 ⁴ // or equivalent	[3]
	(ii)) There will be a unique representation for a number. The format will ensure the number is represented with the greatest por accuracy/precision. Multiplication is performed more accurately/precisely.	
	(iii)	Mantissa: 0100 0000 Exponent: 1000 Therefore number is ½ * 2 ⁻⁸ // +1/512 // +2 ⁻⁹ // 0.00195	[3]
	Mo	e choices made will affect range and accuracy. re bits used for the mantissa will result in greater accuracy. re bits used for the exponent will result in a larger range of numbers.	[max 2]
			[Total: 9]
2	Tra	plication Layer Insport Layer ernet Layer	[1] [1] [1]
		ernet / token ring / fibre optic / two – 1 mark each	[2]
	(c) (i)	network ID: the ID common to all computers on a network host ID: the unique ID of a particular computer on a network	[1] [1]
	(ii)	205 = 11001101 It starts with 110, so it is a Class C address.	[1] [1]
	(iii)	network ID: 205.123.4 host ID: 192	[1] [1]
			[Total: 11]

			•		
3	(a)	mo	nitoring system	[1]	
	(b)	 temperature sensor humidity sensor 			
	(c)	(i)	16 FALSE	[1] [1]	
		(ii)	Array Extreme is a 2D array. each row corresponds to one of the particular tanks	[1]	
			Columns 1 and 3 contain the minimum values for heat and humidity and columns 2 and 4 contain the maximum values for heat and humidity.	[1]	
		(iii)	 for both heat and humidity: test to see whether current reading is lower than set minimum values test to see whether current reading is higher than set maximum values if values outside range then warning message is output 	[1] [1] [1]	
		(iv)	The loop causes a delay so that the conditions are not monitored constantly.	[1]	
	(d)	OR	D 0804 #B00100000 // OR #32 O 0804	[2] [2] [2]	
			[Total:	17]	
4	(a)) a signal/message from some device to indicate that some event has occurred // the device is seeking the attention of processor			
	(b)	disa sav sav onte loae res	ntify the source of the interrupt able all interrupts of a lower priority re the contents of the PC re the contents of the other registers o the stack d and run the appropriate ISR code tore the registers n the stack (stack mentioned 1 mark only)		

enable all interrupts

continue execution of the interrupted process

[max 6]

(c) - partitioning

- memory is divided into partitions
- one or more programs loaded into each partition
- different partitions used for different types of job
- partitions can be of fixed size or dynamic
- programs are scheduled when partition has space for whole program

OR

- paging / virtual memory
- the program is divided into a number of pages // the main memory is divided into a number of page frames (of the same size)
- not all pages of the program need to be initially loaded
- pages swapped in/out of memory as required
- use of page table

OR

- segmentation
- programs are divided into segments by the programmer
- not all segments are initially loaded // segments are loaded as and when required during execution
- segments can be of varying size

[max 6]

[Total: 14]

5	(a)	
	X=A.(A+B)	
	A.	[1]

(b)

 $X = A \cdot \overline{AB} \qquad X = A \cdot \overline{A} + A \cdot \overline{B}$ [1]

(c) logic circuit has:1 AND gate and 1 NOT gate[1]inputs to one NOT gate is B[1]inputs to AND gate are A and output from NOT gate[1]

0 0 0 0 [1] 0 1 0 1 [1]	(d) A	В	Х	Y	
0 1 0 1 [1]	0	0	0	0	[1]
	0	1	0	1	[1]
1 0 0 1 [1]	1	0	0	1	[1]
1 1 1 0				0	[1]

 (e) half adder
 [1]

 [Total: 14]

6 (a	 answer 1> - message digest answer 2> - hash answer 3> - private answer 4> - signature answer 5> - public 	[1] [1] [1] [1] [1]
(b	The message did not come from Raz. The message was altered on its journey.	[1] [1]
(c	 Raz encrypts the message using Tan's public key Tan decrypts the message using her private key 	[1] [1] [1] [1] [max 3]

[Total: 10]

BLANK PAGE

6