

This document consists of 7 printed pages and 1 blank page.

© UCLES 2012 [Turn over

Cambridge International Examinations
Cambridge International Advanced Subsidiary and Advanced Level

COMPUTER SCIENCE 9608/02

Paper 2 Fundamental Problem-solving and Programming Skills For Examination from 2015

SPECIMEN MARK SCHEME

 2 hours

MAXIMUM MARK: 75

2

© UCLES 2012 9608/02/SM/15

1 Dim HomeTeamName As String

 Dim AwayTeamName As String

 Dim WinningTeamName As String

 Dim HomeRuns As Integer

 Dim AwayRuns As Integer

 Dim RunDifference As Integer

 HomeTeamName = Console.ReadLine

 HomeRuns = Console.ReadLine

 AwayTeamName = Console.ReadLine

 AwayRuns = Console.ReadLine

 If HomeRuns > AwayRuns Then

 WinningTeamName = HomeTeamName

 Else

 WinningTeamName = AwayTeamName

 End If

 RunDifference = Math.Abs(HomeRuns - AwayRuns)

 Console.WriteLine("Winning team was " & WinningTeamName

 & " who scored " & RunDifference & " more runs")

 Mark as follows:

 Declaration of name strings [1]
 Declaration of scores [1]
 Input for name strings [1]
 Input of two scores [1]
 Calculation of the runs difference [1]
 Calculation of the difference [1]

 2 × IF or IF-THEN-ELSE used [1]
 Stored as WinningTeamName [1]
 Output shows team and runs difference [1]

[Total: 9]

3

© UCLES 2012 9608/02/SM/15 [Turn over

2 (a) (i) Identifier table:
 INTEGER [1]
 Explanation – the next number selected [1]

 (ii) Pseudocode:

 FOR Counter �1 to 6

 NextNumber ← INT(RND()*50) + 1 [1]

 OUTPUT NextNumber [1]

 ENDFOR / anything to mark the end of the loop [1]
 OUTPUT “That completes the draw”

 (b) Program code demonstrates:
 declaration of variables [1]
 correctly formed ‘count-controlled’ loop [1]
 clear use of relevant inbuilt function [1]

 (c) (i) Explanation, e.g., It is not known how many times the loop needs to be executed to

generate 6 different numbers. [1]

 (ii) any post-condition or pre-condition loop [1]

 (iii) PROCEDURE InitialiseNumberDrawn

 FOR Index � 1 TO 50

 NumberDrawn[Index] � FALSE

 ENDFOR [3]
 END PROCEDURE

 (iv) CALL InitialiseNumberDrawn

 Generated � 0

 REPEAT // start of loop

 NextNumber ← GenerateNumber()

 IF NumberDrawn[NextNumber] = FALSE [2]
 THEN

 OUTPUT NextNumber

 Generated ← Generated + 1 [1]
 NumberDrawn[NextNumber] ← TRUE

 ENDIF [2]

 UNTIL Generated = 6 // end of loop [1]
 OUPUT “That completes the draw”

4

© UCLES 2012 9608/02/SM/15

 (v)

NumberDrawn

1 FALSE

2 FALSE

3 TRUE

4 FALSE

5 FALSE

6 FALSE

7 FALSE

8 FALSE

9 TRUE

10 FALSE

…

39 FALSE

40 FALSE

41 FALSE

42 TRUE

43 FALSE

44 FALSE

45 FALSE

46 FALSE

47 TRUE

48 FALSE

49 FALSE

50 FALSE

 Mark as follows:

 4 × correct ‘TRUE’ cells [1]
 All other cells FALSE [1]
 All cells contain something [1]

 (vi) 3 47 9 42 [1]

[Total: 23]

5

© UCLES 2012 9608/02/SM/15 [Turn over

3 (a) (i) 1 the identifier name for the function (chosen by the programmer) [1]
 2 the parameter [1]
 3 data type (for the parameter) [1]
 4 data type for the value returned by the function [1]

 (ii) Variable PossibleWinner stores the value returned by the function. [1]

 (b) The data must be available each week. [1]
 When the program terminates after each weekly run, the data must be saved. [1]

 (c) Labelled as follows:

PrizeDraw

MODULE 1

READ
PREVIOUSWINNERS.DAT
data to array Winners

MODULE 2

– Generate a member number
– Decide whether this number
 is a new winner

MODULE 3

FUNCTION GenerateNumber (NoOfMembers)

MODULE 4

Search array Winners to
confirm this is a new winner

MODULE 5

– Search for
ConfirmedWinningNumber
in MEMBERS.DAT
– RETURN MemberName

MemberName

Winners array

PossibleWinner

Winners

NoOfMembers
TRUE/FALSE

ConfirmedWinningNumber

ConfirmedWinningNumber

[6]

 (d) (i) Index- INTEGER – Array subscript [3]

6

© UCLES 2012 9608/02/SM/15

 (ii) Mark as follows:

 procedure header [1]
 open the file [1]
 correct open mode used [1]
 index initialised [1]
 loop [1]
 read line of text [1]
 assign to next array element [1]
 increment index [1]
 test for EOF [1]
 output message shown [1]

[max 8]

 (e) (i) DataLength ← LEN(MemberData) [1]

 (ii) MemberNumber ← LEFT(MemberData, 4) [1]

 (iii) MemberName ← MID(MemberData, 6, DataLength – 5) [1]

[Total: 27]

4 (a) (i) P [1]

 (ii) 87 [1]

 (b) 84 [1]

 (c) PEKOHOX [1]

7

© UCLES 2012 9608/02/SM/15

 (d) (i) INPUT MessageString

 LengthMessageString ← LEN(MessageString)

 NewString ← “”

 FOR CharacterPosition ← 1 TO LengthMessageString

 Found ← FALSE

 Index ← 1

 REPEAT

 IF MessageString[CharacterPosition] = Alphabet[Index]

 THEN

 SubstituteCharacter ← Substitute[Index]

 Found ← TRUE

 ELSE

 Index ← Index + 1

 ENDIF

 UNTIL Found

 NewString ← NewString + SubstituteCharacter

 ENDFOR

 OUTPUT NewString

 Mark as follows:
 input of the string [1]
 assign NewString as empty [1]

 calculation of the string length [1]
 outer loop [1]
 for ‘length’ iterations [1]
 compare individual characters with Alphabet array [1]

 inner loop to search for character [1]
 controlled with a counter [1]
 new substitute character added to NewString [1]

 final output of NewString [1]

 [max 10]

 (ii) The code to search the Alphabet array can be avoided. / The ASCII codes for the letters

are in sequence.

 Example – index position for any character is ASC(<char>)-64 [2]

[Total: 16]

8

© UCLES 2012 9608/02/SM/15

BLANK PAGE

