
This document consists of 10 printed pages and 2 blank pages.

DC (AC/SW) 95229/3
© UCLES 2015 [Turn over

Cambridge International Examinations
Cambridge International Advanced Level

*
1

9
1

2
0

8
2

9
4

2
*

COMPUTER SCIENCE 9608/43

Paper 4 Further Problem-solving and Programming Skills May/June 2015

PRE-RELEASE MATERIAL

This material should be given to candidates on receipt by the Centre.

READ THESE INSTRUCTIONS FIRST

Candidates should use this material in preparation for the examination. Candidates should attempt the
practical programming tasks using their chosen high-level, procedural programming language.

www.XtremePapers.com

2

© UCLES 2015 9608/43/PRE/M/J/15

This material is intended to be read by teachers and candidates prior to the June 2015 examination for
9608 Paper 4.

Reminders
The syllabus states:

• there will be questions on the examination paper which do not relate to this pre-release material

• you must choose a high-level programming language from this list:

 •• Visual Basic (Console Mode)

 •• Python

 •• Pascal / Delphi (Console Mode)

The practical skills covered in Paper 2 are a precursor to those required in Paper 4. It is therefore
recommended that the high-level programming language chosen for this paper is the same as that for
Paper 2. This allows for sufficient expertise to be acquired with the opportunity for extensive practice.

Questions on the examination paper may ask the candidate to write:

• structured English

• pseudocode

• program code

A program flowchart should be considered as an alternative to pseudocode for the documenting of an
algorithm design.

Candidates should be confident with:

• the presentation of an algorithm using either a program flowchart or pseudocode

• the production of a program flowchart from given pseudocode (or the reverse)

3

© UCLES 2015 [Turn over9608/43/PRE/M/J/15

TASK 1

A linked list Abstract Data Type (ADT) has these associated operations:

• create linked list
• add item to linked list
• remove item from linked list

Key focus: Linked lists

The linked list ADT consists of a linked list of nodes. Each node consists of data and a pointer to the
next node.

TASK 1.1
Consider the use of a linked list to store names in alphabetical order.

The following sequence of operations is carried out:

CreateLinkedList
AddName("Nabila")
AddName("Jack")
AddName("Kerrie")
AddName("Sara")
RemoveName("Kerrie")
AddName("Zac")

Add appropriate labels to the diagram to show the final state of the linked list. Use the space on the left
as a workspace. Show your final answer in the node shapes on the right:

Key focus: Conceptual
diagrams of linked lists

4

9608/43/PRE/M/J/15© UCLES 2015

TASK 1.2
The linked list is to be implemented as an array of records, where each record represents a node.

The CreateLinkedList operation links all nodes to form the free list and initialises the HeadPointer
and FreePointer.

Complete the diagram to show the values of all pointers after the CreateLinkedList operation has
been carried out.

NameList

HeadPointer Name Pointer

[1]

[2]

[3]

[4]

[5]

FreePointer [6]

…

[49]

[50]

Write pseudocode for the CreateLinkedList operation.

Write program code from your pseudocode design.

Key focus: Implementation of
linked lists using an array of records

5

9608/43/PRE/M/J/15© UCLES 2015 [Turn over

TASK 1.3
Complete the diagram to show the values of all pointers after the following operations have been
carried out:

AddName("Nabila")
AddName("Jack")
AddName("Kerrie")
AddName("Sara")
RemoveName("Kerrie")
AddName("Zac")

NameList

HeadPointer Name Pointer

[1]

[2]

[3]

[4]

[5]

FreePointer [6]

…

[49]

[50]

6

9608/43/PRE/M/J/15© UCLES 2015

TASK 1.4
Complete the identifier table for the pseudocode given below.

Identifier Data type Description

Array to store node data

Name to be added

Pointer to next free node in array

Pointer to first node in list

Pointer to current node

Pointer to previous node

Pointer to new node

01 PROCEDURE AddName(NewName)
02 // New name placed in node at head of free list
03 NameList[FreePointer].Name ← NewName
04 NewNodePointer ← FreePointer
05 FreePointer ← NameList[FreePointer].Pointer
06
07 // initialise current pointer to start of list
08 CurrentPointer ← HeadPointer
09
10 // check that it is not the special case of adding to empty list
11 IF HeadPointer > 0
12 // loop to locate position of new name
13 // saves current pointer and then updates current pointer
14 WHILE NameList[CurrentPointer].Name < NewName
15 PreviousPointer ← CurrentPointer
16 CurrentPointer ← NameList[CurrentPointer].Pointer
17 ENDWHILE
18 ENDIF
19
20 // check to see whether new name is first in linked list
21 // if first item then place item at head of list
22 // if not first item then adjust pointers to place it in correct
23 // position in list
24 IF CurrentPointer = HeadPointer
25 THEN
26 NameList[NewNodePointer].Pointer ← HeadPointer
27 HeadPointer ← NewNodePointer
28 ELSE
29 NameList[NewNodePointer].Pointer ← NameList[PreviousPointer].Pointer
30 NameList[PreviousPointer].Pointer ← NewNodePointer
31 ENDIF
32 ENDPROCEDURE

7

9608/43/PRE/M/J/15© UCLES 2015 [Turn over

TASK 1.5
Write program code for the pseudocode given in Task 1.4.

TASK 1.6
The structured English algorithm for the operation to remove a name from the linked list is as follows:

If list is not empty
 Find the name to be removed
 If it is the first name in the linked list
 Adjust the head pointer
 If it is not the first name in the linked list
 Adjust pointers to exclude the name to be removed from the list
 Link released node into free list

TASK 1.6.1
Write the algorithm, as a procedure in pseudocode, from the structured English given above.

TASK 1.6.2
Write program code from your pseudocode design.

TASK 1.6.3
Test your program code for creating a linked list, adding and removing names, using the data given in
Task 1.3.

Suggested extension task
Queues, stacks, binary trees and dictionaries can be implemented as linked lists of nodes.

Design pseudocode and write program code for these data structures.

8

9608/43/PRE/M/J/15© UCLES 2015

TASK 2

A vehicle hire company has cars and trucks for hire.

The unique registration and the engine size (in litres, to the nearest 0.1 of a litre) are stored for all
vehicles.

Data stored about cars also include the hire charge per day (in $) and the number of passengers
allowed.

Data stored about trucks also include the hire charge per hour (in $) and the maximum payload (in kg).

Object-oriented software is to be written to process data about vehicles hired, including calculating the
hire fee.

The superclass (also known as base class or parent class) Vehicle is designed.

Two subclasses (also known as derived classes or child classes) have been identified:

• Car
• Truck

Key focus: Object-oriented programming

TASK 2.1
Complete the inheritance diagram.

9

9608/43/PRE/M/J/15© UCLES 2015 [Turn over

TASK 2.2
Complete the class diagram showing the appropriate properties and methods.

..

..

..

..

..

..

..

...

...

...

...

...

...

...

...

Constructor()

...

...

...

...

...

...

...

Note: a constructor is a method that creates a new instance of a class and initialises it.

TASK 2.3
Write program code for the class definitions. Make use of polymorphism and inheritance where
appropriate.

TASK 2.4
Write program code to create a new instance of Car.

Suggested extension task
Write program code to display the properties of the object you created in Task 2.4.

10

9608/43/PRE/M/J/15© UCLES 2015

TASK 3

An intruder detection system is inactive when the power is switched off. The system is activated when
the power is switched on. When the system senses an intruder the alarm bell rings. A reset button is
pressed to turn the alarm bell off and return the system to the active state.

The transition from one state to another is as shown in the state transition table below.

Current state Event Next state

System inactive Switch power on System active

System active Senses intruder Alarm bell rings

System active Switch power off System inactive

Alarm bell rings Press reset button System active

Alarm bell rings Switch power off System inactive

Key focus: State transition diagrams
Complete the diagram.

..............................

..............................

..............................
start

..............................

..............................

..............................

11

9608/43/PRE/M/J/15© UCLES 2015

BLANK PAGE

12

9608/43/PRE/M/J/15© UCLES 2015

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable
effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will
be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International
Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after
the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local
Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

