The aqueous chemistry of cations

- Hydrolysis when salts dissolve in water the ions are stabilised by polar water molecules
 - hydrolysis can occur and the resulting solution can become acidic
 - the acidity of the resulting solution depends on the cation present
 - the greater the charge density of the cation, the more acidic the solution

cation	charge	ionic radius	reaction with water and trend in pH of chloride
Na	1+	0.095 nm	
Mg	2+	0.065 nm	
ΑI	3+	0.050 nm	

the greater charge density of the cation, the greater the polarising power and the more acidic the solution

Q.1

*Predict what will happen when SiCl*₄ *is added to water.*

Theory

- aqueous metal ions attract water molecules
- many have six water molecules surrounding
- these are known as hexaaqua ions
- they are octahedral in shape
- water acts as a Lewis Base lone pair donor
- water forms a co-ordinate bond to the metal ion
- metal ions accept the lone pair Lewis Acids

Acidity

- as charge density increases, the cation exhibits a greater attraction for water
- the attraction extends to the shared pair of electrons in the O-H bonds of water
- the electron pair is pulled towards the O, making the bond more polar
- this makes the H more acidic (more δ +)
- it can then be removed by solvent water molecules to form H₃O⁺_(aq).

Equations
$$M^{2+}$$
 $[M(H_2O)_6]^{2+}(aq) + H_2O(I) \rightleftharpoons [M(H_2O)_5(OH)]^{+}(aq) + H_3O^{+}(aq)$

$$M^{3+} [M(H_2O)_6]^{3+}(aq) + H_2O(I) \rightleftharpoons [M(H_2O)_5(OH)]^{2+}(aq) + H_3O^{+}(aq)$$

- the resulting solution is acidic as there are more protons in the water
- the greater the charge density of the cation, the more the equilibrium lies to RHS
- the reaction is known as hydrolysis the water causes the substance to split up

Stronger bases (e.g. $CO_3^{2^-}$, NH_3 and OH^-) can remove further protons ...

- Lewis bases can attack the water molecules co-ordinated to metal ions.
- protons can be removed from each water molecule turning the water from a neutral molecule to a negatively charged hydroxide ion.
- this will affect the overall charge on the complex ion.

ADD BASE - EQUILIBRIUM MOVES TO THE RIGHT ADD ACID - EQUILIBRIUM MOVES TO THE LEFT

$$[M(H_2O)_6]^{2+}(aq) \iff [M(OH)(H_2O)_5]^+(aq) \iff [M(OH)_2(H_2O)_4](s) \iff \\ [M(OH)_3(H_2O)_3]^-_{(aq)}(aq) \iff [M(OH)_4(H_2O)_2]^{2-}(aq) \iff M(OH)_5(H_2O)]^{3-}(aq) \\ \iff [M(OH)_6]^{4-}(aq)$$

When sufficient protons have been removed the complex becomes **neutral** and precipitation of a hydroxide or carbonate occurs.

e.g.
$$M^{2+}$$
 ions $[M(H_2O)_4(OH)_2](s)$ or $M(OH)_2$
 M^{3+} ions $[M(H_2O)_3(OH)_3](s)$ or $M(OH)_3$

In some cases, if the base is strong, further protons are removed and the precipitate dissolves as soluble anionic complexes are formed.

e.g. [M(OH)₆]³⁻(aq) an octahedral, hexahydroxo ion

Stability Constant - K_{stab}

Definition

The stability constant, K_{stab} , of a complex ion is the equilibrium constant for the formation of the complex ion in a solvent from its constituent ions.

in the reaction
$$[\mathbf{M}(\mathbf{H_2O})_6]^{2+}(aq) + 6\mathbf{X}^-(aq) = [\mathbf{M}\mathbf{X}_6]^{4-}(aq) + 6\mathbf{H_2O}(l)$$
 the expression for the stability constant is $\mathbf{K_{stab}} = [\mathbf{M}\mathbf{X}_6^{4-}(aq)]$ Note that the water isn't included $[\mathbf{M}(\mathbf{H_2O})_6]^{2+}(aq)][\mathbf{X}^-(aq)]^6$

The LARGER the value of K_{stab} - the more the equilibrium lies to the right - the more stable the complex ion formed

Because ligand exchange involves a series of equilibria, each step in the process has a different stability constant;

The **overall stability constant** is simply the equilibrium constant for the total reaction. It is found by multiplying the individual stability constants... $\mathbf{k_1} \times \mathbf{k_2} \times \mathbf{k_3} \times \mathbf{k_4} \dots$ etc

 K_{stab} or pK_{stab} ? For an easier comparison, the expression pK_{stab} is often used.

Q.2 Write an expression for the stability constant for the following reaction
$$[Cu(H_2O)_6]^{2+}(aq) + 4Cl^{-}(aq) \iff [CuCl_4]^{2-}(aq) + 6H_2O(l)$$

Summary

- The larger the stability constant, the further the reaction lies to the right
- Complex ions with large stability constants are more stable
- Stability constants are often given as pK_{stab}
- Complex ions with smaller pK_{stab} values are more stable

The First Row Transition Elements - an introduction

Definition D-block elements forming one or more stable ions with partially filled (incomplete) d-sub shells. The first row runs from Sc to Zn filling the 3d orbitals.

Q.3 Why, in terms of energy levels, are the 4s orbitals filled before the 3d orbitals?

Electronic configs.

The filling proceeds according to the usual rules except that chromium and copper change slightly to achieve a more stable configuration.

 $1s^2 2s^2 2p^6 3s^2 3p^6 3d^1 4s^2$ or [Ar] $3d^1 4s^2$

The characteristic properties arise from an incomplete d sub-shell in atoms or ions

Metallic properties

- all the transition elements are metals
- strong metallic bonds result from small size and close packing of the atoms
- higher melting and boiling points and higher densities than s-block metals

	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	etc.
m. pt / °C	63	850	1400	1677	1917	1903	1244	1539	1495	
density / g cm ⁻³	0.86	1.55	3	4.5	6.1	7.2	7.4	7.9	8.9	

Variable oxidation state

- arises from the similar energies required for removal of 4s and 3d electrons.
- maximum oxidation state rises across the group to manganese
- then falls as the energy required to remove more electrons becomes very high
- all (except scandium) have an M2+ ion
- stability of the +2 state increases across the row marked increase in 3rd I.E.

Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn
				+7					
			+6	+6	+6				
		+5	+5	+5	+5				
	+4	+4	+4	+4	+4	+4			
+3	+3	+3	+3	+3	+3	+3	+3	+3	
	+2	+2	+2	+2	+2	+2	+2	+2	+2
								+1	

N.B. When electrons are removed they come from the 4s orbitals first

e.g. Cu 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s¹ Cu⁺ 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ Cu²⁺ 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁹ Ti 1s² 2s² 2p⁶ 3s² 3p⁶ 3d² 4s² Ti²⁺ 1s² 2s² 2p⁶ 3s² 3p⁶ 3d²

 $Ti^{3+} 1s^2 2s^2 2p^6 3s^2 3p^6 3d^1$

 Ti^{4+} 1s² 2s² 2p⁶ 3s² 3p⁶

Coloured ions

- ions with a d10 (full) or d0 (empty) configuration are colourless
- ions with partially filled d-orbitals tend to be coloured
- caused by the ease of transition of electrons between energy levels
- energy is absorbed when an electron is promoted to a higher level
- the frequency of light is proportional to the energy difference

• colour depends on ... transition element

oxidation state

ligand

coordination number

Q.4 Find out the colours of the following ions in aqueous solution

 Sc^3

 V^{2+}

 Fe^{2+}

 Fe^{3}

 Co^{2+}

 Zn^{2+}

 Cr^3

 Mn^{2+}

 Cu^{2+}

Splitting of d orbitals

Placing ligands around a central metal ion changes the energies of the d orbitals. Some of the d orbitals gain energy and some lose energy

The amount of splitting depends on the

- central ion
- ligand

The difference in energy between the new levels affects how much energy will be absorbed when an electron is promoted to a higher level.

The amount of energy will govern the colour of light which will be absorbed.

Absorbed colour	λ nm	Observed colour	λnm
VIOLET	400	GREEN-YELLOW	560
BLUE	450	YELLOW	600
BLUE-GREEN	490	RED	620
YELLOW-GREEN	570	VIOLET	410
YELLOW	580	DARK BLUE	430
ORANGE	600	BLUE	450
RED	650	GREEN	520

a solution of copper(II)sulphate is blue because red and yellow wavelengths are absorbed

What colour is this hexaaqua complex?

· 7

COMPLEX IONS

Formed when species called **ligands** form **co-ordinate bonds** to a central species such as a transition metal ion.

F325

Ligands

- atoms, or ions, which possess lone pairs of electrons
- form co-ordinate bonds to the central ion
- donate a lone pair of electrons into vacant orbitals on the central species

Ligand	Formula	Name of ligand
chloride	Cl⁻	chloro
cyanide	NC ⁻	cyano
hydroxide	HO ⁻	hydroxo
oxide	O^{2-}	ОХО
water	H_2O	aqua
ammonia	NH_3	ammine

- some ligands attach themselves using two or more lone pairs
- classified by the **number of lone pairs they use**, not the number they have
- multidentate and bidentate ligands lead to more stable complexes

Unidentate	form one co-ordinate bond	H_2O , NH_3 , Cl^- and OH^-
Bidentate	form two co-ordinate bonds	$H_2NCH_2CH_2NH_2$, $C_2O_4^{2-}$
Multidentate	form several co-ordinate bonds	EDTA, Haem

Q.5

Draw structures for some bidentate and multidentate ligands

SHAPES

- the shape is governed by the number of ligands around the central ion
- shapes are based on electron pair repulsion theory
- a change of ligand can affect the shape

COORDINATION NUMBER

- the number of co-ordinate bonds formed to the central ion
- if monodentate ligands are present it will equal the number of ligands
- a change of ligand can affect the co-ordination number

Co-ordination No.		Shape	Exa	ample(s)
6		Octahedra	l [Cu	$(H_2O)_6]^{2+}$
4		Tetrahedra	-	CuCl ₄] ²⁻
		Square plan	nar [N	liCl ₄] ²⁻
2	Linear		[Ag	$[(NH_3)_2]^+$
H_2O H_2O OH_2 H_2O OH_2 OH_2	NH ₂ ····································	NH 2	CI CU ²⁺	CI Ni ²⁺ CI
[Cu(H ₂ O) ₆] ²⁺ octahedral	[Cu(H ₂ NCH	$_2$ CH $_2$ NH $_2$) $_3$] $^{2+}$	[CuCl ₄] ²⁻ tetrahedral	[NiCl₄] ²⁻ square planar
CN = 6	CN =	6	CN = 4	CN = 4

Q.6 What is the co-ordination number and shape of the following complex ions?

Coordination No. Shape $[Cr(H_2O)_6]^{3+}$

 $[Co(H_2O)_6]^{2+}$

 $[Cu(NH_3)_2]^+$

 $[CuCl_4]^{2-}$

 $[Al(OH)_6]^{3-}$

 $[Cu(NH_3)_4(H_2O)_2]^{2+}$

ISOMERISM IN COMPLEXES

Octahedral Some complexes; e.g [MA₄B₂]ⁿ⁺ or [MA₃B₃]ⁿ⁺ can exist in more than one form.

Cis-trans Square planar complexes of the form [MA₂B₂]ⁿ⁺ exist in two forms

Q.7 Why is the cis isomer more effective than the trans?

Optical Octahedral complexes with bidentate ligands can exists as a pair of enantiomers (optical isomers).

CATALYSIS

- transition metals and their compounds show great catalytic activity...
- partly filled d-orbitals can be used to form bonds with adsorbed reactants
- activity is due to their ability to exist in more than one oxidation state

Q.8	Give details of reactions where the following catalysts are used?
	V_2O_5
	Fe
	Ni
	Pt/Rh

The first row transition elements

The examples aim to show typical properties of transition metals and their compounds.

- Variable oxidation states
- Formation of complex ions
- The importance of variable oxidation state in catalysis
- Definitions of Lewis Acids and Bases

One typical properties of transition elements is their ability to **form complex ions**. Complex ions consist of a **central metal ion surrounded by** co-ordinated ions or molecules known as **ligands**.

Ligand substitution can lead to changes in ...

- colour
- co-ordination number
- shape
- stability to oxidation or reduction

Reactions When investigating the reactions of selected transition metal ions, look for...

- substitution reactions of complex ions
- variation in oxidation state of transition metals
- the effect of ligands on co-ordination number and shape
- the increased acidity of M³⁺ over M²⁺ due to the increased charge density
- any difference in reactivity of M3+ and M2+ ions in reactions with OH and NH3
- the reason why M³⁺ ions don't form carbonates
- amphoteric character in some metal hydroxides e.g. Al³⁺ and Cr³⁺
- the effect a ligand has on the stability of an oxidation state

Amphoteric character

Metal ions of 3+ charge have a high charge density and their hydroxides can dissolve in both acid and alkali.