ORGANIC SYNTHESIS

Background Chemical synthesis involves the preparation of new compounds from others. Many industrial processes involve a multi stage process where functional groups are converted into other functional groups.

When planning a synthetic route, chemists must consider...

- the reagents required to convert one functional group into another
- the presence of other functional groups in case also they react
- the conditions required temperature, pressure, catalyst
- the rate of the reaction
- the yield especially important for equilibrium reactions
- atom economy
- safety toxicity and flammability of reactants and products
- financial economy cost of chemicals, demand for product
- problems of purification
- possibility of optically active products

Functional groups

Common functional groups found in organic molecules include...

C = Calkene O – H hydroxyl (alcohols)

C - Clhalogenoalkane (aldehydes & ketones) C = Ocarbonyl

C - NH₂ amine nitrile $-C \equiv N$

·O-H carboxylic acid

Q.1 State which of the functional groups listed above react with...

- a) HBr
- b) H_2
- c) OH-
- d) CN^{-}
- e) $H^-(as in NaBH_4 or LiAlH_4)$
- f) [O] (as in acidfied $K_2Cr_2O_7$)
- e) $H^+(aq)$

CHIRAL SYNTHESIS

Rationale

Pharmaceutical synthesis often requires the production of just one optical isomer. This is because...

- one optical isomer usually works better than the other
- in some cases the other optical isomer may cause dangerous side effects
- laboratory reactions usually produce both optical isomers
- naturally occurring reactions usually produce just one optical isomer

Example

Aldehydes and ketones undergo nucleophilic addition with cyanide (nitrile) ions

Problem

- the C=O bond is planar
- the nucleophile can attack from above and below
- there is an equal chance of each possibility
- a mixture of optically active isomers is produced
- only occurs if different groups are attached to the carbonyl group

CN⁻ attacks from below

Consequences

- isomers have to be separated to obtain the one that is effective
- separation can be expensive and complicated
- non-separation could lead to...
 larger doses having a said to do no negotiate.

larger doses having to be given possible dangerous side effects possible legal action

Solution

Use • natural chiral molecules as starting materials

- · reactions which give a specific isomer
- catalysts which give a specific isomer
- enzymes or bacteria which are stereoselective

Other examples

Nucleophilic substitution of halogenoalkanes

There are two possible mechanisms

S_N2

The nucleophile attacks the $\delta +$ end of the C-Br polar bond.

As the C-Br bond breaks, a C-OH bond forms.

The Br⁻ ion leaves and the OH group repels the other groups.

This produces just one optical isomer with reversed optical activity

It is called S_N2 because two species are involved in the rate determining step.

S_N1

$$CH_3$$

$$C \xrightarrow{\bullet} Br \xrightarrow{\bullet} C + Br :$$

$$C_2H_5$$

$$H C_2H_5$$

The initial step involves **heterolytic fission** of the C-Br bond.

A planar carbocation is formed.

HO:
$$CH_3$$
 B CH_3 CH CC_2H_5 CH CC_2H_5 B

The nucleophile can now attack from both sides.

A racemic mixture is formed. There is an equal chance of each possibility.

This produces a racemic mixture of two optical isomers

It is called $S_N 1$ because just one species is involved in the rate determining step.

 $S_N 1$ is the more likely mechanism if bulky groups are attached to the C-Br. The incoming nucleophile will have easier access.

Q.2 Which of the following produce a mixture of alcohols when treated with $OH^{-}(aq)$?

• C₂H₅CHBrCH₂

• 2-chloropropane

• $C_2H_5CHBr\ C_2H_5$

Q.3 State the reagents and conditions needed to carry out the following reaction sequences.

Consider if any of the transformations give rise to isomeric (especially optical) products.

(i) $CH_3CH=CH_2$ -**A** \longrightarrow $CH_3CHBrCH_3$ -**B** \longrightarrow $CH_3CH(OH)CH_3$ -**C** \longrightarrow CH_3COCH_3

Step A

Step **B**

Step C

(ii) $CH_3CH=CH_2$ —**D**—> $CH_3CH_2CH_2Br$ —**E**—> $CH_3CH_2CH_2OH$ —**F**—> CH_3CH_2CHO —**G**—> CH_3CH_2COOH —**H**—> $CH_3CH_2COOC_2H_5$

Step **D**

Step **E**

Step **F**

Step **G**

Step H

Step **J**

Step **K**

Step L

Step M

(iv) $CH_3CH_2CHBrCH_3$ —N—> $CH_3CH_2CH(CN)CH_3$

Step N

 $(v) \qquad CH_3CH_2CHO \qquad --\textbf{P} \longrightarrow \qquad CH_3CH_2CH(OH)CN \qquad --\textbf{Q} \longrightarrow \qquad CH_3CH_2CH(OH)COOH$

Step P

Step Q

(vi) $CH_2=CHCHO$ --**R**--> $CH_2=CHCH_2OH$

Step R