MOLES

The mole • the standard unit of amount of a substance (mol)

- the number of particles in a mole is known as Avogadro's constant ($\mathbf{N}_{\mathbf{A}}$)
- Avogadro's constant has a value of $6.02 \times 10^{23} \mathbf{~ m o l}^{-1}$.

MOLAR
MASS
The mass of one mole of substance. It has units of $\mathbf{g ~ m o l}^{-1}$ or $\mathbf{k g ~ m o l}^{-1}$. e.g. the molar mass of water is $18 \mathrm{~g} \mathrm{~mol}^{-1}$
molar mass $\boldsymbol{=}$ mass of one particle \mathbf{x} Avogadro's constant $\left(6.02 \times 10^{23} \mathrm{~mol}^{-1}\right)$

| Example If 1 atom has a mass of | $1.241 \times 10^{-23} \mathrm{~g}$ |
| :--- | :--- | :--- |
| 1 mole of atoms will have a mass of | $1.241 \times 10^{-23} \mathrm{~g} \times 6.02 \times 10^{23}=7.471 \mathrm{~g}$ |

Q. 1 Calculate the mass of one mole of carbon-12 atoms. [mass of proton $1.672 \times 10^{-24} \mathrm{~g}$, mass of neutron $1.674 \times 10^{-24} \mathrm{~g}$, mass of electron $\left.9.109 \times 10^{-28} \mathrm{~g}\right]$

MOLE CALCULATIONS

| Substances | mass | \mathbf{g} | or $\quad \mathbf{k g}$ |
| :--- | :--- | :--- | :--- |\quad moles $=\frac{\text { mass }}{\text { molar mass }}$

Example Calculate the number of moles of oxygen molecules in 4 g
oxygen molecules have the formula O_{2}
the relative mass will be $2 \times 16=32$ so the molar mass will be $32 \mathrm{~g} \mathrm{~mol}^{-1}$

$$
\text { moles }=\frac{\text { mass }}{\text { molar mass }}=\frac{4 \mathrm{~g}}{32 \mathrm{~g} \mathrm{~mol}^{-1}} \quad \text { ANS. } 0.125 \mathrm{~mol}
$$

Q. 2 Calculate the number of moles in

10 g of Ca atoms	10 g of CaCO_{3}
4 g of hydrogen atoms	4 g of hydrogen molecules

Calculate the mass of...
2 mol of $\mathrm{CH}_{4} \quad 0.5 \mathrm{~mol}$ of NaNO_{3}
6 mol of nitrogen atoms
6 mol of nitrogen molecules

Solutions molarity concentration $/ \mathrm{mol} \mathrm{dm}^{-3}$
volume $\mathbf{d m}^{\mathbf{3}}$ or $\mathbf{c m}^{\mathbf{3}}$

$$
\begin{aligned}
\text { moles } & =\text { concentration } x \text { volume } \\
& =\text { molarity } \times \text { volume in } \mathrm{dm}^{3} \\
& =\frac{\text { molarity } \times \text { volume in } \mathrm{cm}^{3}}{1000}
\end{aligned}
$$

The 1000 takes into account that there are $1000 \mathrm{~cm}^{3}$ in $1 \mathrm{dm}^{3}$

Example 1 Calculate the number of moles of sodium hydroxide in $25 \mathrm{~cm}^{3}$ of 2 M NaOH

$$
\begin{aligned}
& \text { moles }=\frac{\text { molarity } x \text { volume in } \mathrm{cm}^{3}}{1000} \\
&=\frac{2 \mathrm{~mol} \mathrm{dm}}{} \mathbf{- 3} \times 25 \mathrm{~cm}^{3} \\
& \text { ANS. } 0.05 \mathrm{~mol}
\end{aligned}
$$

Example 2 What volume of $0.1 \mathrm{M}_{2} \mathrm{SO}_{4}$ contains 0.002 moles?
volume $=1000 \times$ moles (re-arrangement of above)
in $\mathrm{cm}^{3} \quad$ molarity

$$
=\frac{1000 \times 0.002}{0.1 \mathrm{~mol} \mathrm{dm}^{-3}}
$$

ANS. $20 \mathrm{~cm}^{3}$

Example 34.24 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is dissolved in water and the solution made up to $250 \mathrm{~cm}^{3}$. What is the concentration of the solution in $\mathrm{mol}_{\mathrm{dm}}{ }^{-3}$?
molar mass of $\mathrm{Na}_{2} \mathrm{CO}_{3} \quad=106 \mathrm{~g} \mathrm{~mol}^{-1}$
no. of moles in $250 \mathrm{~cm}^{3} \quad=4.24 \mathrm{~g} / 106 \mathrm{~g} \mathrm{~mol}^{-1}=0.04$ moles
no. of moles in $1000 \mathrm{~cm}^{3}\left(1 \mathrm{dm}^{3}\right)=0.16$ moles
ANS. $0.16 \mathrm{~mol} \mathrm{dm}^{-3}$.
Q. 3 Calculate the number of moles in $1 \mathrm{dm}^{3}$ of 2 M NaOH
$5 \mathrm{dm}^{3}$ of 0.1 M HCl
$25 \mathrm{~cm}^{3}$ of $0.2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$

Calculate the concentration (in moles dm^{-3}) of solutions containing
0.2 moles of HCl in $2 \mathrm{dm}^{3}$
0.1 moles of NaOH in $25 \mathrm{~cm}^{3}$

EMPIRICAL FORMULAE AND MOLECULAR FORMULAE

Empirical Formula

Description Expresses the elements in a simple ratio (e.g. CH_{2}).
It can sometimes be the same as the molecular formula (e.g $\mathrm{H}_{2} \mathrm{O}$ and CH_{4})
Calculations You need • mass, or percentage mass, of each element present

- relative atomic masses of the elements present

Example 1 Calculate the empirical formula of a compound containing C (48\%), H (4\%) and O (48\%)

	C	H	O
1) Write out percentages (by mass)	48%	4%	48%
2) Divide by the relative atomic mass	$48 / 12$	$4 / 1$	$48 / 16$
... this gives a molar ratio	4	4	3

3) If not whole numbers then scale up
4) Express as a formula
$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{3}$

Example 2 Calculate the empirical formula of a compound with C (1.8g), O (0.48g), H (0.3g)

	C	\mathbf{H}	\mathbf{O}
1) Write out ratios by mass	1.8	0.3	0.48
2) Divide by relative atomic mass	$1.8 / 12$	$0.3 / 1$	$0.48 / 16$
(this gives the molar ratio)	0.15	0.3	0.03
3) If not whole numbers then scale up			
- try dividing by smallest value (0.03)	5	10	1
4) Express as a formula	$\mathbf{C}_{5} \mathbf{H}_{10} \mathbf{O}$		

Molecular Formula

Description Exact number of atoms of each element in the formula (e.g. $\mathrm{C}_{4} \mathrm{H}_{8}$)
Calculations Compare empirical formula relative molecular mass. The relative molecular mass of a compound will be an exact multiple (x1, x2 etc.) of its relative empirical mass.

Example Calculate the molecular formula of a compound of empirical formula CH_{2} and relative molecular mass 84.
mass of CH_{2} unit $=14$
divide molecular mass (84) by $14=6$
molecular formula $=$ empirical formula $\times 6=\mathrm{C}_{6} \mathrm{H}_{12}$

MOLAR MASS CALCULATIONS

RELATIVE

MASS
Relative Atomic Mass (\boldsymbol{A}_{r}) The mass of an atom relative to that of the carbon 12 isotope having a value of 12.000
or \quad average mass per atom of an element $x 12$ mass of an atom of ${ }^{12} \mathrm{C}$

* Relative Molecular Mass (\boldsymbol{M}_{r}) The sum of all the relative atomic masses present in a molecule
$\frac{\text { average mass of a molecule }}{\text { mass of an atom of }{ }^{12} \mathrm{C}} \times 12$

NB * Relative Formula Mass is used if the species is ionic

MOLAR VOLUME

At rtp \quad The molar volume of any gas at rtp is $\mathbf{2 4} \mathbf{d m}^{\mathbf{3}} \mathbf{~ m o l}^{-1} \quad\left(0.024 \mathrm{~m}^{3} \mathrm{~mol}^{-1}\right)$
rtp Room Temperature and Pressure

At stp \quad The molar volume of any gas at stp is $22.4 \mathbf{d m}^{3} \mathbf{~ m o l}^{-1} \quad\left(0.0224 \mathrm{~m}^{3} \mathrm{~mol}^{-1}\right)$ stp \quad Standard Temperature and Pressure (273 K and $1.013 \times 10^{5} \mathrm{~Pa}$)
example $\quad 0.5 \mathrm{~g}$ of a gas occupies $250 \mathrm{~cm}^{3}$ at rtp . Calculate its molar mass.

$250 \mathrm{~cm}^{3}$	has a mass of 0.5 g	
$1000 \mathrm{~cm}^{3}\left(1 \mathrm{dm}^{3}\right)$	has a mass of 2.0 g	x4 to convert to dm^{3}
$24 \mathrm{dm}^{3}$	has a mass of 48.0 g	x24 to convert to $24 \mathrm{dm}^{3}$

ANSWER: \quad The molar mass is $48.0 \mathrm{~g} \mathrm{~mol}^{-1}$
Q. 4 Calculate the mass of...
a) $2.4 \mathrm{dm}^{3}$ of carbon dioxide, CO_{2} at rtp
b) $120 \mathrm{~cm}^{3}$ of sulphur dioxide, SO_{2} at rtp
c) 0.08 g of a gaseous hydrocarbon occupies $120 \mathrm{~cm}^{3}$ at rtp. Identify the gas.

Calculations methods include using • the ideal gas equation $\mathrm{PV}=\mathrm{nRT}$

- the Molar Volume at stp

For 1 mole of gas
$P V=R T$
for n moles of gas
$P V=n R T$

$$
P V=n R T
$$

also

$$
P V=\frac{m R T}{M}
$$

$$
P V=\frac{m R T}{M}
$$

where P pressure
\checkmark volume
n number of moles of gas
R gas constant
T temperature
m mass
M molar mass

Pascals (Pa) or $\mathbf{N ~ m}^{-2}$
$\mathrm{m}^{3} \quad$ (there are $10^{6} \mathrm{~cm}^{3}$ in a m^{3})
$8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
Kelvin (K = ${ }^{\circ} \mathrm{C}+273$)
g or Kg
$\mathrm{g} \mathrm{mol}^{-1}$ or $\mathrm{Kg} \mathrm{mol}^{-1}$

Old units $\quad 1$ atmosphere is equivalent to $760 \mathrm{~mm} / \mathrm{Hg}$ or $1.013 \times 10^{5} \mathrm{~Pa}\left(\mathrm{Nm}^{-2}\right)$ 1 litre ($1 \mathrm{dm}^{3}$) is equivalent to $1 \times 10^{-3} \mathrm{~m}^{3}$

Example 1 Calculate the number of moles of gas present in $500 \mathrm{~cm}^{3}$ at 100 KPa pressure and at a temperature of $27^{\circ} \mathrm{C}$.

$$
\begin{array}{rll}
P & =100 \mathrm{KPa}^{2} \times 10^{-6} & =100000 \mathrm{~Pa} \\
V & =500 \mathrm{~cm}^{3} \quad & 0.0005 \mathrm{~m}^{3} \\
T & =27+273 & \\
R & =8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} & \\
=8.31
\end{array}
$$

$$
P V=n R T \quad \therefore \quad n=\frac{P V}{R T}=\frac{100000 \times 0.0005}{300 \times 8.31}=0.02 \mathrm{moles}
$$

Example 2 Calculate the relative molecular mass of a vapour if 0.2 g of gas occupy $400 \mathrm{~cm}^{3}$ at a temperature of $223^{\circ} \mathrm{C}$ and a pressure of 100 KPa .

$$
\begin{array}{rlrl}
P & =100 \mathrm{KPa}^{2} & =100000 \mathrm{~Pa} \\
V & =400 \mathrm{~cm}^{3} \quad \times 10^{-6} \quad=0.0004 \mathrm{~m}^{3} \\
T & =227+273 & =500 \mathrm{~K} \\
m & =0.27 \mathrm{~g} & =0.27 \mathrm{~g} \\
R & =8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} & =8.31
\end{array}
$$

$$
P V=\frac{m R T}{M} \quad \therefore M=\frac{m R T}{P V}=\frac{0.27 \times 500 \times 8.31}{100000 \times 0.0004}
$$

Calculation The volume of a gas varies with temperature and pressure. To convert a volume to that which it will occupy at stp (or any other temperature and pressure) one use the relationship which is derived from Boyle's Law and Charles' Law.

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

where \mathbf{P}_{1} initial pressure
V_{1} initial volume
T_{1} initial temperature (in Kelvin)
\mathbf{P}_{2} final (in this case, standard) pressure
$\mathbf{V}_{2} \quad$ final volume (in this case, at stp)
T_{2} final (in this case, standard) temperature (in Kelvin)

Calculations Convert the volume of gas to that at stp then scale it up to the molar volume. The mass of gas occupying $22.4 \mathrm{dm}^{3}$ (22.4 litres, $22400 \mathrm{~cm}^{3}$) is the molar mass.

Experiment It is possible to calculate the molar mass of a gas by measuring the volume of a given mass of gas and applying the above equations.

Methods • Gas syringe method

- Victor Meyer method
- Dumas bulb method

Example A sample of gas occupies $0.25 \mathrm{dm}^{3}$ at $100^{\circ} \mathrm{C}$ and 5000 Pa pressure. Calculate its volume at stp [273K and 100 kPa].
P_{1} initial pressure $=5000 \mathrm{~Pa} \quad P_{2}$ final pressure $=100000 \mathrm{~Pa}$
V_{1} initial volume $=0.25 \mathrm{dm}^{3} \quad V_{2}$ final volume $=$?
T_{1} initial temperature $=373 \mathrm{~K} \quad T_{2}$ temperature $=273 \mathrm{~K}$
thus $\quad \frac{5000 \times 0.25}{373}=\frac{100000 \times V_{2}}{273}$
therefore $\quad V_{2}=273 \times 5000 \times 0.25=0.00915 \mathrm{dm}^{3}\left(9.15 \mathrm{dm}^{3}\right)$

Gay-Lussac's Law of Combining Volumes

Statement
"When gases combine they do so in volumes that are in a simple ratio to each other and to that of any gaseous product(s) "
N.B. all volumes must be measured at the same temperature and pressure.

Avogadro's Theory

Statement "Equal volumes of all gases, at the same temperature and pressure, contain equal numbers of molecules "

Calculations Gay-Lussac's Law and Avogadro's Theory are used for reacting gas calculations.
example 1 What volume of oxygen will be needed to ensure that $250 \mathrm{~cm}^{3}$ methane undergoes complete combustion at $120^{\circ} \mathrm{C}$? How much carbon dioxide will be formed?

$\mathrm{CH}_{4(\mathrm{~g})}$	$2 \mathrm{O}_{2(\mathrm{~g})}$	$\mathrm{CO}_{2(\mathrm{~g})}$	$2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
1 molecule	2 molecules	1 molecule	2 molecules
1 volume	2 volumes	1 volume	2 volumes (a gas at $120^{\circ} \mathrm{C}$)
$250 \mathrm{~cm}^{3}$	$500 \mathrm{~cm}^{3}$	$250 \mathrm{~cm}^{3}$	$500 \mathrm{~cm}^{3}$

ANS. $500 \mathrm{~cm}^{3}$ of oxygen and $250 \mathrm{~cm}^{3}$ of carbon dioxide.
Special tips An excess of one reagent is often included; e.g. excess O_{2} ensures complete combustion

Check the temperature, and state symbols, to check which compounds are not gases. This is especially important when water is present in the equation.
example $2 \quad 20 \mathrm{~cm}^{3}$ of propane vapour is reacted with $120 \mathrm{~cm}^{3}$ of oxygen at $50^{\circ} \mathrm{C}$. Calculate the composition of the final mixture at the same temperature and pressure?

$\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}$	$+50_{2(\mathrm{~g})}$	$3 \mathrm{CO}_{2(\mathrm{~g})}$	$4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
1 molecule	5 molecules	3 molecules	4 molecules
1 volume	5 volumes	3 volumes	negligible (it is a liquid at $50^{\circ} \mathrm{C}$)
$20 \mathrm{~cm}^{3}$	$100 \mathrm{~cm}^{3}$	$60 \mathrm{~cm}^{3}$	

ANSWER $20 \mathrm{~cm}^{3}$ of unused oxygen and $60 \mathrm{~cm}^{3}$ of carbon dioxide.

example 31 g of gas occupies $278 \mathrm{~cm}^{3}$ at $25^{\circ} \mathrm{C}$ and 2 atm pressure. Calculate its molar mass.
i) convert to stp

$$
\frac{2 \times 278}{298}=\frac{1 \times V}{273}
$$

$$
V=\frac{278 \times 2 \times 273}{1 \times 298}=509 \mathrm{~cm}^{3}
$$

ii) convert to molar volume	e 1 g	occupies	$509 \mathrm{~cm}^{3}$ at stp
	1/509g	occupies	$1 \mathrm{~cm}^{3}$
	$22400 \times 1 / 509 \mathrm{~g}$	occupies	$22400 \mathrm{~cm}^{3}$
therefore	449	occupies	$22.4 \mathrm{dm}^{3}$ at stp

ANSWER: The molar mass is $\mathbf{4 4} \mathrm{g} \mathrm{mol}^{-1}$

Q. 5 - Convert the following volumes into m^{3}
a) $1 \mathrm{dm}^{3}$
b) $250 \mathrm{~cm}^{3}$
c) $0.1 \mathrm{~cm}^{3}$

- Convert the following temperatures into Kelvin
a) $100^{\circ} \mathrm{C}$
b) $137^{\circ} \mathrm{C}$
c) $-23^{\circ} \mathrm{C}$
- Calculate the volume of 0.5 mol of propane gas at 298 K and $10^{5} \mathrm{~Pa}$ pressure
- Calculate the mass of propane $\left(C_{3} H_{8}\right)$ contained in a $0.01 \mathrm{~m}^{3}$ flask maintained at a temperature of 273 K and a pressure of 250 kPa .

$$
\begin{aligned}
& \text { yosz (o yoot }(q \text { УELE }(b
\end{aligned}
$$

$$
\begin{aligned}
& \text { lou } Z=Z / t \\
& \text { 1ou I•0 = OOI/OI } \\
& 8_{t 8}=s_{t I} x 9
\end{aligned}
$$

$$
\begin{aligned}
& \text { lou } t=\quad I / t \\
& \text { lou sz:0 = Ot/OI }
\end{aligned}
$$

