LATTICE ENTHALPY

WARNING	There can be two definitions - one is the opposite of the other! Make sure you know which one is being used.

Lattice Dissociation Enthalpy

Definition The enthalpy change when ONE MOLE of an ionic lattice dissociates nto isolated gaseous ions.

- highly endothermic there is a strong electrostatic attraction between ions of opposite charge
 - a lot of energy must be put in to overcome the attraction

Lattice Formation Enthalpy

- *Definition* The enthalpy change when ONE MOLE of an ionic crystal lattice is formed from its isolated gaseous ions.
- *Values* highly exothermic strong electrostatic attraction between ions of opposite charge
 - a lot of energy is released as the bond is formed
 - relative values are governed by the charge density of the ions.

Example $Na^{+}(g) + C\Gamma(g) - Na^{+} C\Gamma(s)$

- Notes
 one cannot measure this value directly; it is found using a Born-Haber cycle
 the greater the charge densities of the ions, the more they attract each other and the larger the lattice enthalpy.
 - the more exothermic the lattice enthalpy, the higher the melting point

Thermal stability and Lattice Enthalpy

Oxides • thermal stability of Group II oxides decreases down the group

	Mg ²⁺ O ²⁻	Ca ²⁺ O ²⁻	Sr ²⁺ O ²⁻	Ba ²⁺ O ²⁻
Lattice Enthalpy (kJ mol-1)	-3889	-3513	-3310	-3152
Melting Point (°C)	2853	decre	easing values	——>

MgO

- magnesium oxide is used to line furnaces REFRACTORY LINING
 this is because of its high melting point (2853°C)
- the high melting point is a result of the large (highly exothermic) lattice enthalpy
- high lattice enthalpy due to the attraction between ions of high charge density

Carbonates • thermal stability of Group II carbonates increases down the group

- MgCO₃ decomposes much easier than BaCO₃
- BUT the lattice enthalpy of MgCO₃ is HIGHER!

	MgCO ₃	CaCO ₃	SrCO ₃	BaCO ₃
Decomposes at	350°C	832°C	1340°C	1450°C
Lattice Enthalpy (kJ mol-1)	-3123		>	-2556

- Mg²⁺ ions are **SMALLER** and have a **HIGHER CHARGE DENSITY**
- this makes them **MORE HIGHLY POLARISING**
- they **DISTORT THE CO32**²⁻ ion
- this WEAKENS THE ATTRACTION BETWEEN IONS
- the LATTICE IS NOT AS STRONG

Calculating Lattice Enthalpy

- Introduction you cannot measure lattice enthalpy directly
 - values are found using a Born-Haber cycle
 - Born-Haber cycles use Hess's Law
 - The following enthalpy changes are part of a Born-Haber cycle.

Standard Enthalpy Change of Formation (ΔH°_{f})

- *Definition* The enthalpy change when ONE MOLE of a compound is formed in its standard state from its elements in their standard states.
- Values Usually, but not exclusively, exothermic

Example(s)	Mg (s)	+	Cl ₂ (g)	>	MgCl ₂ (s)
	Na (s)	+	¹⁄₂ C l₂(g)	>	NaCl(s)

• Elements In their standard states have zero enthalpy of formation.

Q.2 Write equations representing the standard enthalpy changes of formation of

magnesium oxide

sodium oxide

potassium bromide

Standard Enthalpy Change of Atomisation (ΔH°_{at} , 298)

Definition The enthalpy change when ONE MOLE of gaseous atoms is formed from an element in its standard state.

Values Always endothermic - you have to break the bonds holding the atoms together

Example(s) $\frac{1}{2}Cl_2(g) \longrightarrow Cl(g)$ and $Na(s) \longrightarrow Na(g)$ (see note)

for solid elements, the change is known as ENTHALPY OF SUBLIMATION

Q.3 Write equations representing the standard enthalpy changes of atomisation / sublimation of magnesium

oxygen

potassium

4	F325	Lattice Enthalpy					
First Ionis	ation Energy						
Definition	The energy required to remove one mole of electrons (to infinity) from one mole of gaseous atoms to form one mole of gaseous positive ions.						
Values	Always endothermic need to overcome the pull of the nucleu	is on the electron					
Example(s)	Na(g)> Na⁺(g) + e⁻ and Mg(g)> Mg	g +(g) + e ⁻					
Notes	 There is an ionisation energy for each successive electron reme.g. SECOND IONISATION ENERGY Mg⁺(g)> M Look back in your notes to refresh your memory about the treme.g. 	noved. I g² +(g) + e ⁻ nds in I.E.'s					
Q.4	 Write equations representing the following ionisation energy changes; 1st IE of magnesium 2nd IE of magnesium 1st IE of sodium 1st IE of potassium 						

Electron Affinity

- *Definition* The enthalpy change when ONE MOLE of gaseous atoms acquires ONE MOLE of electrons (from infinity) to form ONE MOLE of gaseous negative ions.
- Values Always exothermic a favourable process due to the nucleus attracting the electron

Example $Cl_{(g)}(g) + e^{-} - Cl_{(g)}(g)$

Notes • Do not confuse electron affinity with electronegativity.

Q.5 Write equations representing the following electron affinity (EA) changes;

1st EA of chlorine

1st EA of oxygen

2nd EA of oxygen

BORN-HABER CYCLES

- involve the application of Hess's Law
 - used to outline the thermodynamic changes during the formation of ionic salts
 - used to calculate Lattice Enthalpy
 - Lattice Enthalpy cannot be determined directly by experiment

BORN-HABER CYCLE FOR SODIUM CHLORIDE

STEPS (values are in kJ mol⁻¹)

1	Enthalpy change of formation of NaCl	$Na(s) + \frac{1}{2}Cl_2(g) \longrightarrow NaCl(s)$	- 411
2	Enthalpy change of sublimation of sodium	Na(s) \longrightarrow Na(g)	+ 108
3	Enthalpy change of atomisation of chlorine	$\frac{1}{2}Cl_2(g) \longrightarrow Cl(g)$	+ 121
4	Ist Ionisation Energy of sodium	Na(g) \longrightarrow Na ⁺ (g) + e ⁻	+ 500
5	Electron Affinity of chlorine	$Cl(g) + e^- \longrightarrow Cl^-(g)$	- 364
6	Lattice Enthalpy of NaCl	$Na^+(g) + Cl^-(g) \longrightarrow NaCl(s)$	

According to Hess's Law, the enthalpy change is independent of the path taken. Therefore...

STEP 6 = - (STEP 5) - (STEP 4) - (STEP 3) - (STEP 2) + (STEP 1) - (-364) - (+500) - (+121) - (+108) + (-411) = -776 kJ mol⁻¹

Q.6 Construct a similar Born-Haber cycle for NaCl₂.

If the Lattice Enthalpy of $NaCl_2$ is -3360 kJ mol⁻¹, what is its enthalpy of formation ? What does this tell you about the stability of $NaCl_2$?

Lattice Enthalpy

F325

Q.7 If the Lattice Enthalpy of M_gCl_2 is -2493 kJ mol⁻¹, what is its enthalpy of formation?

Will an ionic salt dissolve in water?

Introduction If a pair of oppositely charged gaseous ions are placed together, they will attract each other. The energy change (LATTICE ENTHALPY) is highly exothermic.

If the ions were put in water, they would be attracted to polar water molecules. the resulting energy change (HYDRATION ENTHALPY) is highly exothermic.

In both; the greater charge density of the ions = a more exothermic reaction

The missing stage of the cycle is known as the **ENTHALPY OF SOLUTION**.

The size and value of the enthalpy of solution depends on the **relative values** of the lattice enthalpy and the hydration enthalpy.

If HE >> LE then the salt will probably be soluble

Enthalpy Change of Hydration

- *Definition* The enthalpy change when ONE MOLE of a gaseous ion dissolves in (an excess of) water to give an infinitely dilute solution.
- Values Exothermic
- Example Na⁺(g) \longrightarrow Na⁺(aq) $Cl^{-}(g) \longrightarrow Cl^{-}(aq)$

Notes The polar nature of water stabilises the ions.

The greater the charge density of the ion, the greater the affinity for water and the more exothermic the process will be.

Na⁺	-390	Mg ²⁺	-1891	Cl⁻	-384	(all in kJ mo ^{l-1})
K+	-305	Ca ²⁺	-1561	Br⁻	-351	

Enthalpy Change of Solution

Definition The enthalpy change when ONE MOLE of a substance dissolves in (an excess of) solvent to give an infinitely dilute solution.

Values Mainly exothermic

Example **NaC***l*(s) **——> NaC***l*(aq) [for ionic compounds, the ions will be dissociated]

SOME USEFUL VALUES FOR THERMODYNAMIC CHANGES

Values, which may be slightly different in other books, are in kJ mol⁻¹

Enthalpy change of formation	$Na^+ \\ K^+ \\ Mg^{2+} \\ Ca^{2+}$	<i>Cl⁻ Br</i> ⁻ -411 -381 -437 -398 -641 -524 -796 -683	- I ⁻ -288 -328 -364 -364 -534	<i>O</i> ²⁻ -414 -361 -602 -635
Enthalpy of atomisation	H +218 C +716 N +472 O +249	Na K Mg Ca	+108 +89 +148 +178	F +79 Cl +122 Br +112
Ionisation Energy	<i>Ist I</i> Na +490 Mg +738 Ca +590 K +419	$\begin{array}{cccc} F.E. & 2na \\ 5 & +4! \\ 8 & +1^2 \\ 0 & +11 \\ 9 & +30 \end{array}$	<i>d I.E.</i> 563 451 145 051	
Electron Affinity	F -348 O -141	Cl -349	Br -342	I ⁻ -314
2nd Electron Affinity	O + 798			
Lattice Enthalpy <i>Check which definition</i> <i>is being used and use</i> <i>appropriate sign for</i> Δ <i>H</i>	$\begin{array}{c} Na^+ \\ K^+ \\ Rb^+ \\ Mg^{2+} \\ Ca^{2+} \end{array}$	<i>Cl⁻ Br</i> ⁻ -780 -742 -711 -679 -685 -656 -2256 -2259	F^{-} F^{-} -918 -817 -783	<i>O</i> ²⁻ -2478 -2232 -3791
Hydration Enthalpy	Li ⁺ -499 Na ⁺ -390 K ⁺ -305	${f Be^{2+}}\ {Mg^{2+}}\ {Ca^{2+}}\ {Al^{3+}}$	-2385 -1891 -1561 -4613	F [−] -457 Cl [−] -384 Br [−] -351 I [−] -307 OH [−] -460