HALOGENOALKANES (HALOALKANES)

Structure Contain the functional group C-X where X is a halogen (F,Cl,Br or I)

Types Halogenoalkanes - halogen is attached to an aliphatic skeleton - alkyl group

Haloarenes - halogen is attached directly to a benzene (aromatic) ring - aryl group

Classification Halogenoalkanes are classified according to what is attached to the functional group.

Names Based on the original alkane skeleton with a prefix indicating halogens and their position.

CH₃CH₂CI 1-chloropropane CH₃CHCICH₃ 2-chloropropane

CH₂CICHCICH₃ 1,2-dichloropropane CH₃CBr(CH₃)CH₃ 2-bromo-2-methylpropane

Q.1 Draw and name all the structural isomers of $C_3H_6Br_2$, C_4H_9Cl and $C_5H_{11}Br$.

Q.2 Classify the structural isomers of C_4H_9Cl and $C_5H_{11}Br$ as 1° , 2° or 3° .

Physical properties

Boiling pts

- boiling point increases with mass
- for isomeric compounds the greater the degree of branching, the lower the boiling point

Solubility

halogenoalkanes are soluble in organic solvents but insoluble in water

NUCLEOPHILIC SUBSTITUTION REACTIONS

2812

Theory

- halogens have a **greater electronegativity** than carbon
- a dipole is induced in the C-X bond and it becomes polar
- the carbon is thus open to attack by nucleophiles

polarity in a C-Br bond

- Nucleophiles examples are OH⁻, CN⁻, NH₃ and H₂O
 - possess at least one LONE PAIR of electrons
 - are attracted to the slightly positive (electron deficient) carbon

Basic

mechanism

- the nucleophile uses its lone pair to provide the electrons for a new bond
- the halogen is displaced as an ion as carbon can only have 8 electrons in its outer shell
- the result is substitution following attack by a nucleophile
- the mechanism is therefore known as NUCLEOPHILIC SUBSTITUTION

Rate of reaction

the rate of reaction depends on the strength of the C-X bond

...²³⁸... kJmol⁻¹ C-Br²⁷⁶... kJmol⁻¹ C-CI338 kJmol⁻¹ 484 kJmol⁻¹

WEAKEST BOND

EASIEST TO BREAK FASTEST REACTION

Advanced work

This form of nucleophilic substitution is known as S_N2 ; it is a bimolecular process. An alternative method involves the initial breaking of the C-X bond to form a carbocation, or carbonium ion, (a unimolecular process - S_N1 mechanism), which is then attacked by the nucleophile. S_N1 is favoured for tertiary haloalkanes where there is steric hindrance to the attack and a more stable tertiary, 3°, carbocation intermediate is formed.

Aqueous sodium (or potassium) hydroxide 1. NaOH Reagent

> **Conditions** Reflux in aqueous solution (SOLVENT IS IMPORTANT)

Product Alcohol

hydroxide ion (OH⁻) Nucleophile

Equation $C_2H_5Br_{(l)} + NaOH_{(aq)} - C_2H_5OH_{(l)} +$ NaBr_(aq) 3

Mechanism

WARNING It is **important to quote the solvent** when answering questions. **Elimination** takes place when ethanol is the solvent - SEE LATER

The reaction (and the one with water) is sometimes known as HYDROLYSIS

2. KCN Reagent Aqueous, alcoholic potassium (or sodium) cyanide

> Reflux in aqueous, alcoholic solution **Conditions**

Product Nitrile (cyanide) Nucleophile cyanide ion (CN⁻)

KCN (aq/alc) Equation C₂H₅Br + **KBr**

Mechanism

Importance reaction is that it extends the carbon chain by one carbon atom

The CN group can then be converted to carboxylic acids or amines.

Hydrolysis $-> C_2H_5COOH + NH_3$ C₂H₅CN + 2H₂O —

 $C_2H_5CN + 4[H] \longrightarrow C_2H_5CH_2NH_2$ Reduction

3. NH₃ Reagent Aqueous, alcoholic ammonia (in EXCESS)

Conditions Reflux in aqueous, alcoholic solution under pressure

Product Amine (or its salt due to a reaction with the acid produced)

Nucleophile Ammonia (NH₃)

Equation
$$C_2H_5Br + NH_{3 (aq/alc)} \longrightarrow C_2H_5NH_2 + HBr$$

$$HBr + NH_{3 (aq/alc)} \longrightarrow NH_4Br$$

$$C_2H_5Br + 2NH_3_{(aq/alc)} \longrightarrow C_2H_5NH_2 + NH_4Br$$

Mechanism

Why excess ammonia?

The second ammonia molecule ensures the removal of HBr which would lead to the formation of a salt.

A large excess ammonia ensures that further substitution doesn't take place - see below

Problem

The **amine produced is also a nucleophile** (lone pair on the N) and can attack another molecule of haloalkane to produce a 2° amine. This in turn is a nucleophile and can react further producing a 3° amine and, eventually an ionic quarternary ammonium salt.

$$C_2H_5NH_2$$
 + C_2H_5Br ---> HBr + $(C_2H_5)_2NH$ diethylamine, a 2° amine $(C_2H_5)_2NH$ + C_2H_5Br ---> HBr + $(C_2H_5)_3N$ triethylamine, a 3° amine $(C_2H_5)_3N$ + C_2H_5Br ---> $(C_2H_5)_4N^+Br^-$ tetraethylammonium bromide, a 4° salt

4. H₂O A similar reaction to that with OH⁻ takes place with water.

It is slower as water is a poor nucleophile.

Equation e.g.
$$C_2H_5Br_{(1)} + H_2O_{(1)}$$
 -----> $C_2H_5OH_{(1)} + HBr_{(aq)}$

5

ELIMINATION REACTIONS OF HALOALKANES

2812

Problem

The products of reactions between haloalkanes and OH⁻ are influenced by the solvent. Both mechanisms take place simultaneously but the choice of solvent favours one route.

Solvent	Product	Action of OH⁻	Mechanism
WATER	ALCOHOL	NUCLEOPHILE	SUBSTITUTION
ALCOHOL	ALKENE	BASE	ELIMINATION

Reaction

Alcoholic sodium (or potassium) hydroxide Reagent

Conditions Reflux in alcoholic solution

Product Alkene Elimination Mechanism

Equation NaOH_(alc)

Mechanism

- the OH⁻ ion acts as a base and picks up a proton
- the proton comes from a carbon atom next to the one bonded to the halogen
- the electron pair left moves to form a second bond between the carbon atoms
- the halogen is displaced
- overall there is ELIMINATION of HBr.

What organic products are formed when concurrent substitution and elimination takes place with $CH_3CHBrCH_3$?

Complication The OH removes a proton from a carbon atom adjacent the C bearing the halogen. If there had been another carbon atom on the other side of the C-Halogen bond, its hydrogen(s) would also be open to attack. If the haloalkane is unsymmetrical (e.g. 2-bromobutane) a mixture of isomeric alkene products is obtained.

What organic products do you get with alcoholic NaOH and CH₃CHBrCH₂CH₃? Explain your answers with a mechanism.

USES OF HALOGENOALKANES

Synthetic The reactivity of the C-X bond means that halogenoalkanes play an important part in

synthetic organic chemistry. The halogen can be replaced by a variety of groups via a

nucleophilic substitution mechanism.

During the manufacture of ibuprofen, substitution of a bromine atom takes place.

Monomers chloroethene

tetrafluoroethene

Polymers poly(chloroethene) PVC —(CH₂ — CHCI)_n packaging

> $-(CF_2 - CF_2)_n$ PTFE poly(tetrafluoroethene) non-stick surfaces

CFC's dichlorofluoromethane CHFCl₂ refrigerant, aerosol propellant, blowing agent

> trichlorofluoromethane CF₃C1 refrigerant, aerosol propellant, blowing agent

bromochlorodifluoromethane CBrCIF₂ fire extinguishers

> CCI₂FCCIF₂ dry cleaning solvent, degreasing agent

PROBLEMS WITH CFC's

- Ozone layer CFC's have been blamed for damage to the environment by thinning the ozone layer
 - · Ozone absorbs a lot of harmful UV radiation
 - CFC's break up in the atmosphere to form free radicals

$$CF_2CI_2 \longrightarrow CF_2CI^{\bullet} + CI^{\bullet}$$

• the free radicals catalyse the breaking up of ozone

Solution

- CFC's were designed by chemists to help people
- chemists are now having to synthesise alternatives to CFC's to protect the environment
- this will allow the reversal of the ozone layer problem

Preparation of halogenoalkanes - Summary (details can be found in other sections)

From alkanes CH₄ + Cl₂ ---> CH₃Cl + HCl Free radical substitution / UV light C_2H_4 + HBr \longrightarrow C_2H_5Br Electrophilic addition / no catalyst or light alkenes $C_2H_5OH + HBr \longrightarrow C_2H_5Br + H_2O$ alcohols Protonation of alcohol with an acid catalyst