FREE ENERGY & ENTROPY

- *Problem* a spontaneous change occurs in one particular direction and not the other
 - exothermic reactions are usually spontaneous go from higher to lower enthalpy

However ...

Why should reactions with a positive ΔH value take place spontaneously ? e.g. some salts dissolve readily in water and the temperature of the solution drops

- Surely, this means that energy has to be put in for the reaction to take place
- The answer is that enthalpy change ΔH does not give the full story.
- Free energy changes, ΔG , give a better picture.

Free

- A reaction is only spontaneous if it can do work *it must generate free energy*A negative ΔG indicates a reaction capable of proceeding of its own accord
 - $\Delta G < 0$ (- ive)Spontaneous reaction $\Delta G > 0$ (+ ive)Non-spontaneous reaction (spontaneous in reverse direction) $\Delta G = 0$ The system is in equilibrium
- Entropy Entropy (symbol **S**) is a measure of the disorder of a system
 - The more the disorder, the greater the entropy
 - If a system becomes more disordered, the value of ΔS is positive
 - Values tend to be in **JOULES** not kJ

$$\Delta S^{\circ} = S^{\circ}_{\text{final}} - S^{\circ}_{\text{initial}}$$

2nd Law The Second Law of Thermodynamics is based on entropy ...

"Entropy tends to a maximum"

infers... "all chemical and physical changes involve an overall increase in entropy"

Entropy increases when

- solids melt
- liquids boil
- solids dissolve in water
- the number of gas molecules increases
- the temperature increases

Free energy, enthalpy and entropy are related ...
$$~\Delta G^\circ = \Delta H^\circ$$
 - $T\Delta S^\circ$

1

2

Special case

For a reversible reaction at equilibrium the value of ΔG is zero

F325

If $\Delta G = ZERO$ then $\Delta S = \frac{\Delta H}{T}$

Worked Example Calculate the entropy change when water turns to steam at 100° C. The enthalpy of vaporisation of water is +44 kJ mol¹

 $\Delta S = \frac{\Delta H}{T} = \frac{+44 \ kJ \ mol^{-1}}{373 \ K} = +118 \ J \ K^{-1} \ mol^{-1}$

Q.1

Element X melts reversibly at 400K. If the enthalpy change of fusion of X is 2.84 kJ mol⁻¹, what is the entropy change? [Fusion is the same as melting]

Will a reaction work?

Theory	A reaction should be spontaneous if ΔG is negative , so • Work out if it is exothermic (ΔH -ive) or endothermic (ΔH +ive)							
	?							
Examples								
General	• If AH	is -ive	and	$\Delta \mathbf{S}$ is \cdot	+ive	then	$\Delta \mathbf{G}$ must be negative	
	• If ΔH	is +ive	and	$\Delta \mathbf{S}$ is \cdot	-ive	then	$\Delta \mathbf{G}$ must be positive	
Specific	i)	H ₂ (g) +	F ₂ (g)	>	2HF	(g)		
	ΔH -ive highly exothermic proces ΔS 0 same number of gas mol					ocess s molec	ules	
	.:.	ΔG	must b	e nega	ative			
	ii)	Na ⁺ (g) +	CI ⁻(g) ——	-> Na	aCI(s)		
		ΔH -ive ΔS -ive	highly exothermic (Lattice Enthalpy) more order in a solid					
	.: .	ΔG	is neg	jative	(mostl	y due to	o the high value of lattice enthalpy	

F325 iii) $NH_4NO_3(s) \longrightarrow NH_4^+(aq) + NO_3^-(aq)$ ΔH +ive endothermic (the solution goes colder) ΔS +ive more disorder as aqueous ions ... ΔG will be negative if T is high **or** the value of ΔS is big enough *Q.2* What is the sign of the entropy change in the following reactions ? Give reasons for your decision. a) $NH_4NO_{3(s)} \longrightarrow N_2O_{(g)} + 2H_2O_{(g)}$ b) $NH_{3(g)}$ + $HCl_{(g)}$ -----> $NH_4Cl_{(s)}$ c) $Na_{(s)} \longrightarrow Na_{(g)}$ $COCl_{2(g)} \longrightarrow CO_{(g)} + Cl_{2(g)}$ d) $PCl_{3(g)}$ + $Cl_{2(g)}$ -----> $PCl_{5(g)}$ *e*) $C_6H_{12(l)} + 9O_{2(g)} \longrightarrow 6CO_{2(g)} + 6H_2O_{(g)}$ f $g) \qquad C_{(s)} \quad + \quad O_{2(g)} \quad -\!\!\!-\!\!\!-\!\!\!> \quad CO_{2(g)}$

State the sign for the enthalpy change in *c*)

- f)
- *g*)