CHEMICAL KINETICS

Reminder The following methods can be used to increase the rate of a reaction.

- increase surface area
- increase temperature
- add a catalyst
- use a light source (certain reactions only)
- increase pressure (gaseous reactions only)
- increase concentration

How they affect the rate has been studied in earlier work with special reference to Collision Theory.

CONCENTRATION

Introduction Increasing concentration = more frequent collisions = increased rate
However: Increasing the concentration of some reactants can have a greater effect than increasing others.

Rate Reactions start off at their fastest then slow as the reactant concentration drops.
eg In the reaction $\mathbf{A}+\mathbf{2 B} \longrightarrow \mathbf{C}$ the concentrations might change as shown

- the steeper the curve the faster the rate of the reaction
- reactions start off quickly because of the greater likelihood of collisions
- reactions slow down with time because there are fewer reactants to collide

Reactants (A and B)

Concentration decreases with time

Products (C)

Concentration increases with time
[] refers to the concentration in $\mathrm{mol} \mathrm{dm}^{-3}$

- the rate of change of concentration is found from the slope or gradient
- the slope at the start will give give the INITIAL RATE
- the slope gets less (showing the rate is slowing down) as the reaction proceeds

Investigation • the variation in concentration of a reactant or product is followed with time

- method depends on the reaction type and the properties of reactants/products
e.g. - Extracting a sample from the reaction mixture and analysing it by titration
- Using a colorimeter or UV / visible spectrophotometer
- Measuring the volume of gas evolved or a change in conductivity

THE RATE EQUATION

Format - links the rate of reaction to the concentration of reactants

- can only be found by doing actual experiments, not by looking at the equation
the equation...
might have a rate equation like this

where	r	rate of reaction	units	conc. / time usually mol $\mathrm{dm}^{-3} \mathrm{~s}^{-1}$
k	rate constant	units	depend on the rate equation	
	[]	concentration	units $\mathrm{mol} \mathrm{dm}^{-3}$	

$A+2 B+X \longrightarrow C+D$ $\mathbf{r}=\mathbf{k}[\mathrm{A}][\mathrm{B}]^{2}$
mol dm ${ }^{-3}$

Interpretation The above rate equation tells you that the rate of reaction is...

- proportional to the conc of reactant A
- proportional to the square of the conc of B
- not proportional to the conc of X
doubling $[A]$ - will double rate doubling $[B]$ - will quadruple rate altering $[\mathrm{X}]$ - no effect on rate

Order of reaction

Individual order The power to which a concentration is raised in the rate equation
Overall order The sum of all the individual orders in the rate equation.
e.g. in the rate equation $r=k[A][B]^{2}$

- the order with respect to A is 1
- the order with respect to B is 2

1st Order

- the overall order is 3

Value(s) - orders need not be whole numbers

- orders can be zero if the rate is unaffected by how much substance is present

Remember The rate equation is derived from experimental evidence not by from an equation.

- species in the stoichiometric equation sometimes aren't in the rate equation
- substances not in the stoichiometric equation can appear in the rate equation
Q. 1 State the overall order, and the individual orders, for the following ?
a) rate $=k[C]^{3}[D]$
b) rate $=k[Z]$
Q. 2 What substances appear in the rate, but not in the stoichiometric, equation ?

Experimental determination of order

Method 1 1. Plot a concentration/time graph

Calculate the rate (gradient) at points on the curve.

When the concentration is $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$ the gradient $=\frac{-3.2 \mathrm{~mol} \mathrm{dm}^{-3}}{44 \text { minutes }}$
The gradient is negative because the concentration is decreasing

Notice how the gradient gets less as the reaction proceeds. This shows that the rate of reaction is getting less.

```
rate = -7.3 x 10-2 mol dm-3 min-1
```


CONCENTRATION v. TIME GRAPHS

Concentration of reactant

WHAT TO LOOK FOR

A ZERO ORDER a straight line with constant slope

B FIRST ORDER downwardly sloping curve with a constant half life

C SECOND ORDER
steeper downwardly sloping curve; levels out quicker

Method 1 (cont)
2. Plot another graph of rate (y axis) versus the concentration (x axis)

Concentration

A ZERO ORDER
a straight line horizontal to the x axis rate is independent of concentration

B FIRST ORDER

a straight line with a constant slope rate is proportional to concentration
GRADIENT = RATE CONSTANT (k)

C SECOND ORDER

an upwardly sloping curve; plotting rate v. conc 2 gives a straight line

Method 2 The initial rates method.

Do a series of experiments (at the same temperature) at different concentrations of a reactant but keeping all others constant.

- Plot a series of concentration / time graphs
- Calculate the initial rate (slope of curve at start) for each reaction.
- Plot each initial rate (y axis) against the concentration used (x axis)
- From the graph, calculate the relationship between concentration and rate
- Hence deduce the rate equation - see the graph at the top of the page
- To find order directly, logarithmic plots are required.

Half-life A characteristics of a FIRST ORDER REACTION is that it has a constant half life $\left(t_{1 / 2}\right) \quad$ which is independent of the concentration. It is very similar to radioactive decay.

Definition The time taken for the concentration of a reactant to drop to half of its original value.
the time taken to drop...
from 1 to $1 / 2=$ one half life
$1 / 2$ to $1 / 4=$ one half life
$1 / 4$ to $1 / 8=$ one half life

A useful relationship

$$
\begin{aligned}
k t_{1 / 2} & =\log _{\mathrm{e}} 2 \\
& =0.693 \\
t_{1 / 2} & =\text { the half life }
\end{aligned}
$$

TO CALCULATE THE RATE CONSTANT (k) FOR A FIRST ORDER REACTION

$$
k=\frac{0.693}{t_{1 / 2}}
$$

Q. 3 In the reaction, $A+B \longrightarrow X+Y$, the concentration of A was found to vary as shown in the table. It was later found that the order with respect to (wrt) B was 0 .

- plot a graph of [A] v. time
- calculate the time it takes for [A] to go from...

$$
\begin{aligned}
& 1.30 \text { to } 0.65 \\
& 1.00 \text { to } 0.50 \\
& 0.50 \text { to } 0.25 \quad \text { (all in units mol } \mathrm{dm}^{-3} \text {) }
\end{aligned}
$$

- deduce from the graph that the order wrt A is 1
- calculate the value of the rate constant, k

Time $/ \mathrm{s}$	$[\mathrm{A}] / \mathrm{mol} \mathrm{dm}^{-3}$
0	1.30
20	1.05
40	0.85
60	0.68
80	0.55
100	0.45
120	0.36
140	0.29
160	0.24
180	0.19
200	0.15

Rate constant (k)

Value

Units
The units of k depend on the overall order of reaction. e.g. if the rate equation is rate $=k[A]^{2}$ the units of k will be $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{sec}^{-1}$

Calculation Divide rate (conc per time) by as many concentrations that are in the rate equation

Overall Order	0	1	2	3
units of k	$\mathrm{mol} \mathrm{dm}{ }^{-3} \mathrm{sec}^{-1}$	sec ${ }^{-1}$	$\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{sec}^{-1}$	$\mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{sec}^{-1}$
example in	in the rate equation	$r=$	k has un	sec^{-1}
	in the rate equatio	$r=$	k has un	$\mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{sec}$

Q. 4 Derive suitable units for the rate constant k in the following rate equations.

$$
\begin{aligned}
& r=k[C]^{3}[D] \\
& r=k[Z]^{2} \\
& r=k[A][B]
\end{aligned}
$$

Q. 5 Using the data, construct the rate equation for the reaction between nitric oxide and oxygen. What is the value and the units of the rate constant (k) ?

Expt Initial $[\mathrm{NO}] / \mathrm{mol} \mathrm{dm}^{-3} \quad$ Initial $\left[\mathrm{O}_{2}\right] / \mathrm{mol} \mathrm{dm}^{-3} \quad$ Initial rate $/ \mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$
$1 \quad 1$
$2 \quad 2$
7
$3-2 \quad-2 \quad 56$
433 ?

Hint Compare Expts. 2 and 3 to find the order with respect to O_{2} Compare Expts. 1 and 3 to find the order with respect to NO

Rate determining step

Explanation • many reactions consist of a series of separate stages

- each of these stages has its own rate and hence its own rate constant
- the overall rate of a multi-step process is governed by the slowest step - rather like a production line where the output can be held up by a slow worker
- the slowest step is known as the rate determining step
- investigation of the rate equation gives an idea of whether, or not, a reaction takes place in a series of steps

Example lodine reacts with propanone... $\mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{I}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{COCH}_{2} \mathbf{I}+\mathbf{H I}$

The rate equation for the reaction is

- Why is $\left[\mathrm{H}^{+}\right]$in the rate equation?
- Why is $\left[I_{2}\right]$ not in the rate equation?
the reaction is catalysed by acid
the reaction has more than one step and the slowest step doesn't involve iodine

The rate determining step must therefore involve propanone and acid.

Example 2 The reaction $\mathbf{H}_{2} \mathrm{O}_{2}+2 \mathbf{H}_{3} \mathrm{O}^{+}+2 \mathbf{I I}^{-} \longrightarrow \mathbf{I}_{\mathbf{2}}+\mathbf{4} \mathbf{H}_{\mathbf{2}} \mathrm{O}$ takes place in 3 steps

Step $2 \quad \mathrm{IO}^{-}+\mathbf{H}_{3} \mathrm{O}^{+} \rightarrow \mathbf{H I O}+\mathbf{H}_{2} \mathrm{O}$ fast
Step $3 \quad \mathbf{H I O}+\mathbf{H}_{3} \mathbf{O}^{+}+\mathbf{I}^{-} \longrightarrow \mathbf{I}_{\mathbf{2}}+\mathbf{2} \mathbf{H}_{2} \mathrm{O}$ fast

The rate determining step is STEP 1 as it is the slowest

Example 3 The reaction $\mathbf{2 N}_{\mathbf{2}} \mathbf{O}_{\mathbf{5}} \rightarrow \mathbf{4} \mathbf{N O}_{\mathbf{2}} \mathbf{+} \mathbf{O}_{\mathbf{2}} \quad$ takes place in 3 steps
$\begin{array}{ll}\text { Step } 1 & \mathbf{N}_{2} \mathbf{O}_{5} \longrightarrow \mathbf{N O}_{2}+\mathbf{N O}_{3} \quad \text { (occurs twice) }\end{array}$
Step $2 \quad \mathrm{NO}_{\mathbf{2}}+\mathrm{NO}_{3} \longrightarrow \mathbf{N O}+\mathbf{N O}_{\mathbf{2}}+\mathbf{O}_{\mathbf{2}}$ fast
Step $3 \quad \mathbf{N O}+\mathbf{N O}_{3} \longrightarrow \mathbf{2 N O}_{2}$ fast from another Step 1

The rate determining step is STEP 1 as it is the slowest The rate equation for the reaction is rate $=\mathbf{k}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$

The hydrolysis of halogenoalkanes

Introduction Haloalkanes (RX) are hydrolysed by aqueous hydroxide ions $\quad \mathbf{R X}+\mathrm{OH}^{-}(\mathbf{a q}) \rightarrow \mathbf{R O H}+\mathbf{X}^{-}$

There are two possible mechanisms

Mech. 1 - one step reaction

- requires both species to collide
- rate is affected by both reactants

$$
\text { rate }=k[R X]\left[\mathrm{OH}^{-}\right]
$$

- second order overall

Mech 2 • two step reaction
(i) $\mathbf{R X} \longrightarrow \mathbf{R}^{+}+\mathbf{X}^{-}$
(ii) $\mathbf{R}^{+}+\mathrm{OH}^{-} \longrightarrow \mathbf{R O H}$

- step (i) is slower as it involves bonds breaking and will thus be the rate determining step
- rate depends only on $[R X] \quad$ rate $=\mathbf{k}[R X]$
- first order overall

Mechanism 2 is very common with tertiary $\left(3^{\circ}\right)$ haloalkanes whereas primary $\left(1^{\circ}\right)$ and secondary $\left(2^{\circ}\right)$ haloalkanes usually undergo hydrolysis via a second order process.

Molecularity The number of individual particles of the reacting species taking part in the rate determining step of a reaction.
e.g. $\mathbf{A}+\mathbf{2 B} \rightarrow \mathbf{C}+\mathbf{D}$ molecularity is 3 - one A and two B 's need to collide
$A \longrightarrow 2 B \quad$ however has a molecularity of 1 - only one A is involved

