

CALCULATING THE pH OF ACID/ALKALI MIXTURES

The method used depends on whether there are weak or strong acids and alkalis and which is in excess

STRONG ACID STRONG BASE

- 1 Calculate initial moles of H⁺ and OH⁻
- 2 Calculate which one is in excess
- 3 Calculate its concentration in the combined solution
- 4 Convert concentration to pH

Calculate the pH after 20cm³ of 0.1M HCl is added to 25cm³ of 0.1M NaOH

	pH	= 14 - 1.95	= 12.05
	pOH	= 1.95	
4	[OH ⁻]	$= 5 \times 10^{-4} / 0.045$	$= 0.0111 \text{ mol dm}^{-3}$
3	$final\ volume\ (20+25)$	$= 45cm^3$	$= 0.045 dm^3$
	moles of excess OH ⁻	$= 5 \times 10^{-4}$	
2	original moles of OH ⁻	$= 0.1 \times 25/1000$	$= 2.5 x 10^{-3} moles$
1	original moles of $H^{\scriptscriptstyle +}$	$= 0.1 \times 20/1000$	$= 2 \times 10^{-3} \text{ moles}$

WEAK ACID EXCESS STRONG BASE

- 1 Calculate initial moles of acid and alkali
- 2 Calculate the excess moles of OH⁻
- 3 Calculate the OH⁻ concentration in the combined solution
- 4 Convert concentration to pH

Calculate the pH after 22cm³ of 0.1M CH₃COOH is added to 25cm³ of 0.1M NaOH

1	original moles of H+	=	0.1 x 22/1000	$= 2.2 \times 10^{-3} \text{ moles}$
2	original moles of OH^-	=	0.1 x 25/1000	$= 2.5 x 10^{-3} moles$
	moles of excess OH ⁻	=	3 x 10 ⁻⁴	
3	$final\ volume\ (22+25)$	=	47cm³	$= 0.047dm^3$
4	[OH ⁻]	=	$3 \times 10^{-4} / 0.047$	$= 6.38 \times 10^{-3} \mod dm^{-3}$
	pOH	=	2.20	
	pH	=	14 - 2.20	= 11.80

IF THE MIXTURE CONTAINS EXCESS WEAK ACID, A DIFFERENT APPROACH IS NEEDED

EXCESS WEAK ACID STRONG BASE

- 1 Calculate initial moles of acid and alkali
- 2 Calculate the excess moles of acid
- 3 Calculate the moles of anion formed (same as the alkali used up)
- **4** Use the value of K_a for the weak acid to calculate the value of [H⁺]
- 5 Convert concentration to pH

Calculate the pH after 20cm³ of 0.1M KOH is added to 25cm³ of 0.1M CH₃COOH

```
= 2.5 \times 10^{-3} \text{ moles}
                             original moles of CH<sub>3</sub>COOH
                                                                         = 0.1 \times 25/1000
                                                                                                             = 2.0 \times 10^{-3} \text{ moles}
                             original moles of KOH
                                                                         = 0.1 \times 20/1000
                     2
                                                                         = 5.0 \times 10^{-4}
                            excess moles CH<sub>3</sub>COOH
                     3
                                                                         = moles\ of\ H^+\ removed = 2.0\ x\ 10^{-3}
                            moles of CH<sub>3</sub>COO<sup>-</sup>
                             K_a for CH_3COOH
                                                                         = [H^+][CH_3COO^-]
                                                                                                            = 1.7 \times 10^{-5} at 25^{\circ}C
                                                                              [CH<sub>3</sub>COOH]
YOU ONLY NEED TO PUT IN THE MOLAR RATIO (NOT THE CONCENTRATIONS) BECAUSE THE
                                                               [H^+] = 1.7 \times 10^{-5} \times 5 \times 10^{-4}
                                                                                                             = 4.25 \times 10^{-6} \text{ mol dm}^{-3}
VOLUME IS THE SAME FOR BOTH SPECIES
                                                                                2.0 x 10<sup>-3</sup> moles
                            pH
                                                                         = -log[H^+]
                                                                                                             = 5.37
```