CALCULATING THE pH OF ACID/ALKALI MIXTURES

The method used depends on whether there are weak or strong acids and alkalis and which is in excess

STRONG ACID
 STRONG BASE

1 Calculate initial moles of H^{+}and OH^{-}
2 Calculate which one is in excess
3 Calculate its concentration in the combined solution
4 Convert concentration to pH

Calculate the $\mathbf{p H}$ after $\mathbf{2 0} \mathrm{cm}^{\mathbf{3}}$ of 0.1 M HCl is added to $\mathbf{2 5} \mathrm{cm}^{\mathbf{3}}$ of 0.1 M NaOH
1 original moles of $\mathrm{H}^{+}=0.1 \times 20 / 1000=2 \times 10^{-3}$ moles
2 original moles of $\mathrm{OH}^{-}=0.1 \times 25 / 1000=2.5 \times 10^{-3}$ moles
moles of excess $\mathrm{OH}^{-}=5 \times 10^{-4}$
3 final volume $(20+25)=45 \mathrm{~cm}^{3}=0.045 \mathrm{dm}^{3}$
4 [OH-]
$=5 \times 10^{-4} / 0.045=0.0111 \mathrm{~mol} \mathrm{dm}^{-3}$
pOH
$=1.95$
$=14-1.95 \quad=12.05$
pH

WEAK ACID
EXCESS
STRONG BASE

1 Calculate initial moles of acid and alkali
2 Calculate the excess moles of OH^{-}
3 Calculate the OH^{-}concentration in the combined solution
4 Convert concentration to pH

Calculate the $\mathbf{p H}$ after $\mathbf{2 2} \mathrm{cm}^{3}$ of $\mathbf{0 . 1} \mathrm{M} \mathrm{CH}_{\mathbf{3}} \mathbf{C O O H}$ is added to $\mathbf{2 5} \mathrm{cm}^{\mathbf{3}}$ of $\mathbf{0 . 1} \mathbf{M ~ N a O H}$

1 original moles of H^{+}
2 original moles of OH^{-}
moles of excess OH^{-}
3 final volume $(22+25)$
4 [$\left.\mathrm{OH}^{-}\right]$
pOH
pH
$=0.1 \times 22 / 1000=2.2 \times 10^{-3}$ moles
$=0.1 \times 25 / 1000=2.5 \times 10^{-3}$ moles
$=3 \times 10^{-4}$
$=47 \mathrm{~cm}^{3} \quad=0.047 \mathrm{dm}^{3}$
$=3 \times 10^{-4} / 0.047=6.38 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$
$=2.20$
$=14-2.20 \quad=11.80$

IF THE MIXTURE CONTAINS EXCESS WEAK ACID, A DIFFERENT APPROACH IS NEEDED

1 Calculate initial moles of acid and alkali
2 Calculate the excess moles of acid
3 Calculate the moles of anion formed (same as the alkali used up)
4 Use the value of K_{a} for the weak acid to calculate the value of $\left[\mathrm{H}^{+}\right]$
5 Convert concentration to pH
Calculate the $\mathbf{p H}$ after $20 \mathrm{~cm}^{3}$ of 0.1 M KOH is added to $25 \mathrm{~cm}^{\mathbf{3}}$ of $0.1 \mathrm{M} \mathrm{CH} \mathbf{3} \mathbf{C O O H}$
1 original moles of $\mathrm{CH}_{3} \mathrm{COOH}=0.1 \times 25 / 1000=2.5 \times 10^{-3}$ moles
original moles of $\mathrm{KOH}=0.1 \times 20 / 1000=2.0 \times 10^{-3}$ moles
2 excess moles $\mathrm{CH}_{3} \mathrm{COOH}=5.0 \times 10^{-4}$
3 moles of $\mathrm{CH}_{3} \mathrm{COO}^{-}=$moles of H^{+}removed $=2.0 \times 10^{-3}$
$4 K_{a}$ for $\mathrm{CH}_{3} \mathrm{COOH}$

You only need to putin the molar ratio (NOT THE CONCENTRATIONS) BECAUSE THE VOLUME IS THE SAME FOR BOTH SPECIES

