1.	(a)	(i)	$(1s^2)2s^2 2p^6 3s^2 3p^6 4s^6$ (1)	1	
1	(u)	(ii)	7 (1)	1	
	(b)	(i)	$Ca + Cl_2 \rightarrow CaCl_2$ (1)	1	
		(ii)	Ionic (1)	1	
		(iii)	$\begin{bmatrix} \bullet \bullet \bullet \\ \bullet Cl + \\ \bullet \bullet \bullet \end{bmatrix} \bigoplus \begin{bmatrix} Ca \\ 2 \bigoplus \\ \bullet \bullet \bullet \end{bmatrix}^{2 \bigoplus } \begin{bmatrix} \bullet \bullet \bullet \\ \bullet \bullet \bullet \end{bmatrix}^{\bigoplus }$ • 1 mark for correct number of electrons on each ion (1) 1 mark for correct charges on each ion (1) 1 mark for correct ratio of ions (1)	3	[7]
2.	(a)		np litmus paper (1) ched (1)	2	
	(b)	(i)	Covalent (1)	1	
	(0)	(i) (ii)	Either	Ĩ	
		(11)	• HCl reacts with water (1)	2	
			• to form ions which are hydrated / bonded with water (1)	2	
	(c)		$O_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$ (2) ark for substances and balance. / mark for state symbols	2	[7]
3.	(a)	(i)	$2\text{Li} + 2\text{H}_2\text{O} \rightarrow 2\text{LiOH} + \text{H}_2(g) (2)$ species (1) balance (1)	2	
		(ii)	Any two from: Solid floats / moves around on surface (1) bubbles evolved / fizzes (1) liquid remains colourless (1)	2	
	(b)	Neu	ons 3 (1) trons 4 (1) trons 2 (1)	3	
	(c)	Rela	tive atomic mass		
		= (6	$\frac{5.02 \times 7.39) + (7.02 \times 92.61)}{100} $ (1)		
		6.95	(must be three s.f.) (1)	2	
	(d)	• N	Dip Pt / nichrome wire in solid and place in hot/blue flame (1) Na salt gives yellow colour (1) alt give deep / magenta red / crimson colour (1)	3	
		11 50		5	[12]
4.	(a)		Magnesium ions are arranged in a regular lattice (1)		
			urrounded by a sea of / cloud of / delocalised electrons (1) ch can move through the solid when a potential is applied (1)	3	

	(b)	• as even	 At room temperature the ions are in a fixed position / in a lattice (1) as heat applied the ions vibrate more (1) eventually ions have enough energy to overcome electrostatic attraction (1) 4 				
	(c)		olid has ions in fixed sites / cannot move (1) nolten has ions free to move and carry current to electrodes (1)	2	[9]		
5.	(a)	(i) (ii)	 Bond pairs 3 (1) lone pairs / (1) P H 	2			
			H H H Angle (actual figure is 93) any value between 108 and 93 is acceptable (1)	2			
	(b)	(i)	 Hydrogen bonds (1) Induced dipole-dipole interactions / van der Waals / London / dispersion (1) 	2			
		(ii)	 Phosphine does not have hydrogen bonds (1) Lack of hydrogen bond not compensated by / increased induced dipole-dipole (1) 	2			
	(c)	(i)	 When the pair of electrons shared by two atoms (in covalent bond) (1) both come from the same atom (1) 	2			
		(ii)	The lone pair on the nitrogen (1)	1			
		(iii)	 Tetrahedral (1) has four pairs of bonding electrons (1) repel as far away from each other as, possible / minimum repulsion (1) 	3	[14]		
6.	(a)	An e	lement with its highest energy electron in a <i>p</i> orbital (1)	1			
	(b)	(i)	Colour brown (1) <i>State</i> : liquid (1)	2			
		(ii)	The solution goes (from colourless to) dark brown / black solid produced (1)	1			
	(c)	(i)	$Br_2 + 2e^- \rightarrow 2Br^-$ (1) or ¹ / ₂ this	1			
		(ii)	$Fe^{2+} \rightarrow Fe^{3+} + e^{-}$ (1)	1			
		(iii)	$Br_2 + 2Fe^{2+} \rightarrow 2Br^- + 2Fe^{3+}$ (1) or ¹ / ₂ this	1			
	(d)	(i)	$Br_2 + 2NaOH \rightarrow NaBr + NaOBr + H_2O(2)$ 1 mark for correct bromine products Ionic equation acceptable	2			
		(ii)	Disproportionation (1)	1			

	(e)	(i)	KBr –1 (1) KBrO ₃ +5 (1) Br ₂ 0(1)	3	
		(ii)	 Oxidising agent: KBrO₃ (1) Oxidation number of Br in KBrO₃ goes down (1) 	2	[15]
7.	(a)	(i)	 Energy / enthalpy change per mole (1) required to remove an electron (1) from / mole of gaseous atoms (1) 	3	
		(ii)	 The nuclear charge on K is greater than on Na (1) the outer electron is further from the nucleus (1) but there is more shielding around K than Na (1) 	3	
	(b)	(i)	4.56 / 71 (1) = 0.0642 (1)mol	2	
		(ii)	Answer from (i) $- 2$ (1) = 0.0321 mol	1	
		(iii)	Answer from (ii) \times 24 (1) 0.771 dm ³	1	
		(iv)	Answer from (iii) \times 3/2 (1) 1.16 dm ³	1	[11]