1. (a) (i) ( $\left.1 \mathrm{~s}^{2}\right) 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 4 \mathrm{~s}^{6}(\mathbf{1}) \quad 1$
(ii) 7 (1) 1
(b) (i) $\mathrm{Ca}+\mathrm{Cl}_{2} \rightarrow \mathrm{CaCl}_{2}$ (1) $\quad 1$
(ii) Ionic (1) 1


- 1 mark for correct number of electrons on each ion (1) 1 mark for correct charges on each ion (1)
1 mark for correct ratio of ions (1)

2. (a) Damp litmus paper (1) bleached (1)
(b) (i) Covalent (1)
(ii) Either

- HCl reacts with water (1)
- to form ions which are hydrated / bonded with water (1)
(c) $\quad \mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})(2)$

1 mark for substances and balance. / mark for state symbols
3. (a) (i) $2 \mathrm{Li}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{LiOH}+\mathrm{H}_{2}(\mathrm{~g})(2)$
species (1) balance (1)
(ii) Any two from:

Solid floats / moves around on surface (1)
bubbles evolved / fizzes (1)
liquid remains colourless (1)
2
(b) Protons 3 (1)

Neutrons 4 (1)
Electrons 2 (1)
(c) Relative atomic mass
$=\frac{(6.02 \times 7.39)+(7.02 \times 92.61)}{100}(\mathbf{1})$
6.95 (must be three s.f.) (1)
(d) - Dip Pt / nichrome wire in solid and place in hot/blue flame (1)

- Na salt gives yellow colour (1)

Li salt give deep / magenta red / crimson colour (1)
4. (a) - Magnesium ions are arranged in a regular lattice (1)

- surrounded by a sea of / cloud of / delocalised electrons (1) which can move through the solid when a potential is applied (1)
(b) - At room temperature the ions are in a fixed position / in a lattice (1)
- as heat applied the ions vibrate more (1)
eventually ions have enough energy to overcome electrostatic attraction (1) ions break free are able to move as solid melts (1)
(c) - Solid has ions in fixed sites / cannot move (1)
- molten has ions free to move and carry current to electrodes (1)

5. (a) (i) - Bond pairs 3 (1)

- lone pairs / (1)

2
(ii)


Angle (actual figure is 93) any value between 108 and 93 is acceptable (1)
(b) (i) • Hydrogen bonds (1)

- Induced dipole-dipole interactions / van der Waals /

London / dispersion (1)
(ii) - Phosphine does not have hydrogen bonds (1)

- Lack of hydrogen bond not compensated by / increased induced dipole-dipole (1)
(c) (i) - When the pair of electrons shared by two atoms (in covalent bond) (1)
- both come from the same atom (1)
(ii) The lone pair on the nitrogen (1)
(iii) - Tetrahedral (1)
- has four pairs of bonding electrons (1)
repel as far away from each other as, possible / minimum repulsion (1)

6. (a) An element with its highest energy electron in a $p$ orbital (1) 1
(b) (i) Colour brown (1) State: liquid (1)2

(ii) The solution goes (from colourless to) dark brown / black solid
produced (1) ..... 1

produced (1)
(c) (i) $\mathrm{Br}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Br}^{-}(\mathbf{1})$ or $1 / 2$ this $\quad 1$
(ii) $\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-}(\mathbf{1}) \quad 1$
(iii) $\mathrm{Br}_{2}+2 \mathrm{Fe}^{2+} \rightarrow 2 \mathrm{Br}^{-}+2 \mathrm{Fe}^{3+}(\mathbf{1}) \quad 1$
or $1 / 2$ this
(d) (i) $\mathrm{Br}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{NaBr}+\mathrm{NaOBr}+\mathrm{H}_{2} \mathrm{O}$ (2)

1 mark for correct bromine products 2
Ionic equation acceptable
(ii) Disproportionation (1)
(e) (i) $\mathrm{KBr}-1(\mathbf{1}) \mathrm{KBrO}_{3}+5(\mathbf{1}) \mathrm{Br}_{2} 0(\mathbf{1}) 3$
(ii) • Oxidising agent: $\mathrm{KBrO}_{3}$ (1)

- Oxidation number of Br in $\mathrm{KBrO}_{3}$ goes down (1)

7. (a) (i) • Energy / enthalpy change per mole (1)

- required to remove an electron (1)
from / mole of gaseous atoms (1)
(ii) - The nuclear charge on K is greater than on Na (1)
- the outer electron is further from the nucleus (1)
but there is more shielding around K than Na (1) 3
(b) (i) $4.56 / 71(\mathbf{1})=0.0642(\mathbf{1}) \mathrm{mol} \quad 2$
(ii) Answer from (i) - $2(\mathbf{1})=0.0321 \mathrm{~mol} \quad 1$
(iii) Answer from (ii) $\times 24$ (1) $0.771 \mathrm{dm}^{3} \quad 1$
(iv) Answer from (iii) $\times 3 / 2$ (1) $1.16 \mathrm{dm}^{3} \quad 1$

