AMINES 2814 **Structure** Contain the NH_2 group. Classification primary (1°) amines secondary (2°) amines tertiary (3°) amines quarternary (4°) ammonium salts. Aliphatic methylamine, ethylamine, dimethylamine **Aromatic** the NH₂ group is **attached directly** to the benzene ring (phenylamine) **1**° **Nomenclature** Named after the groups surrounding the nitrogen + amine e.g. $C_2H_5NH_2$ ethylamine $(CH_3)_2NH$ dimethylamine (CH₃)₃N trimethylamine C₆H₅NH₂ phenylamine (aniline) **Q.1** Draw structures for all amines of molecular formula $C_4H_{11}N$. Classify them as primary, secondary or tertiary amines. **Properties** The presence of the lone pair in 1°, 2° and 3° amines makes them ... - Lewis bases they can be lone pair donors - Brønsted-Lowry bases they can be proton acceptors - Nucleophiles they provide a lone pair to attack a positive (electron deficient) centre # **Physical properties** Boiling point • Boiling points increase with molecular mass. Amines have higher boiling points than corresponding alkanes because of intermolecular hydrogen bonding. • Quarternary ammonium salts are ionic - exist as salts. $\begin{array}{ccc} C & C \\ \vdots N^{\frac{\delta-}{\epsilon}} H^{\frac{\delta+}{\epsilon}} & \vdots N^{\frac{\delta-}{\epsilon}} H^{\delta+} \\ \vdots & \vdots & \vdots \\ H^{\delta+} & H^{\delta+} & H^{\delta+} \end{array}$ intermolecular hydrogen bonding in amines Solubility • Soluble in organic solvents. - Lower mass compounds are soluble in water due to hydrogen bonding with the solvent. - Solubility decreases as the molecules get heavier. $$\begin{matrix} C \\ \vdots N^{\frac{\delta-}{\delta}} H^{\frac{\delta+}{\delta}} & \vdots \overset{\vdots}{O}^{\frac{\delta-}{\delta}} H^{\delta+} \\ H^{\delta+} & H^{\delta+} \end{matrix}$$ hydrogen bonding between amines and water ### **Basic properties** Bases The **lone pair** on nitrogen makes amines **basic**. RNH₂ Strength - depends on the availability of the lone pair and thus its ability to pick up protons - the greater the electron density on the N, the better its ability to pick up protons - this is affected by the groups attached to the nitrogen. - electron withdrawing substituents (e.g. benzene rings) decrease basicity as the electron density on N is lowered. electron releasing substituents (e.g. CH₃ groups) increase basicity as the electron density is increased $$CH_3$$ — NH_2 draw arrows to show the electron density movement - *Measurement* the strength of a weak base is depicted by its pK_b value - the smaller the pK_b the stronger the base. - the pK_a value can also be used; it is worked out by applying pK_a + pK_b = 14. - the smaller the pK_b, the larger the pK_a. | Compound | Formula | pK_b | Comments | |-------------|--------------|--------|-------------------------------------| | ammonia | NH_3 | 4.76 | | | methylamine | CH_3NH_2 | 3.36 | methyl group is electron releasing | | phenylamine | $C_6H_5NH_2$ | 9.38 | electrons delocalised into the ring | strongest base methylamine > ammonia > phenylamine weakest base #### Reactions Amines which dissolve in water produce weak alkaline solutions $$CH_3NH_{2(g)} + H_2O_{(l)} \rightleftharpoons CH_3NH_3^+_{(aq)} + OH^-_{(aq)}$$ • Amines react with acids to produce salts. $C_6H_5NH_{2(1)}$ + $HCI_{(aq)}$ ---> $C_6H_5NH_3^+CI_{(aq)}^-$ phenylammonium chloride This reaction allows one to dissolve an amine in water as its salt. Addition of aqueous sodium hydroxide liberates the free base from its salt $$C_6H_5NH_3^+Cl_{(aq)}^-$$ + NaOH_(aq) ---> $C_6H_5NH_{2(l)}$ + NaCl_(aq) + H₂O_(l) # Nucleophilic Character Due to their lone pair, amines react as nucleophiles with haloalkanes forming substituted amines nucleophilic substitution acyl chlorides forming N-substituted amides addition-elimination **Haloalkanes** Amines can be prepared from haloalkanes (see below and previous notes). Reagent Aqueous, alcoholic ammonia Conditions Reflux in aqueous, alcoholic solution under pressure Product Amine (or its salt due to a reaction with the acid produced) Nucleophile Ammonia (NH₃) Equation $C_2H_5Br + NH_3_{(aq/alc)} \longrightarrow C_2H_5NH_2 + HBr (or C_2H_5NH_3^+Br^-)$ #### Problem The amine produced is also a nucleophile (lone pair on the N) and can attack another molecule of haloalkane to produce a secondary amine. This in turn is a nucleophile and can react further producing a tertiary amine and, eventually an ionic quarternary amine. $C_2H_5NH_2 + C_2H_5Br \longrightarrow HBr + (C_2H_5)_2NH$ diethylamine, a 2° amine $(C_2H_5)_2NH + C_2H_5Br \longrightarrow HBr + (C_2H_5)_3N$ triethylamine, a 3° amine $(C_2H_5)_3N$ + C_2H_5Br ---> $(C_2H_5)_4N^+Br^-$ tetraethylammonium bromide, a 4° salt #### Uses Quarternary ammonium salts with long chain alkyl groups e.g. [CH₃(CH₂)₁₇]₂N⁺(CH₃)₂Cl⁻ are used as cationic surfactants in fabric softening. # Preparation from haloalkanes Nucleophilic substitution using ammonia ... see above nitriles Reduction of nitriles using Li⁺AlH₄⁻ in dry ether e.g. $CH_3CH_2CN + 4[H] \longrightarrow CH_3CH_2CH_2NH_2$ nitro Reduction by refluxing with tin and conc. hydrochloric acid compounds e.g. $C_6H_5NO_2 + 6[H] \longrightarrow C_6H_5NH_2 + 2H_2O$ #### **AMINO ACIDS** #### Structure Amino acids contain 2 functional groups amine NH₂carboxyl COOH $\begin{matrix} H^{\delta+} \\ \mid_{\delta-} \\ -N \vdots \\ \mid_{\delta+} \\ H^{\delta+} \end{matrix}$ $\begin{array}{c} O^{\delta-} \\ -C \\ O-H \end{array}$ Amine Carboxyl They all have a similar structure - the identity of R₁ and R₂ vary ### Optical Isomerism Amino acids can exist as optical isomers if they have different R₁ and R₂ groups - optical isomers exist when a molecule contains an asymmetric carbon atom - asymmetric carbon atoms have four different atoms or groups attached - two isomers are formed - one rotates plane polarised light to the left, one rotates it to the right - glycine doesn't exhibit optical isomerism as there are two H attached to the C atom #### **Zwitterions** - a zwitterion is a dipolar ion - it has a plus and a minus charge in its structure - · amino acids exist as zwitterions - produces increased inter-molecular forces - melting and boiling points are higher a zwitterion # Acid/base properties - amino acids possess acidic and basic properties due to their functional groups - they will form salts when treated with acids or alkalis. #### Basic properties: react with H+ HOOCCH₂NH₂ + H+ ---> HOOCCH₂NH₃+ HCI HOOCCH₂NH₂ + HCI ---> HOOCCH₂NH₃+ CI⁻ ## Acidic properties: react with OH⁻ HOOCCH₂NH₂ + OH⁻ ---> OOCCH₂NH₂ + H₂O NaOH HOOCCH₂NH₂ + NaOH ---> Na⁺OOCCH₂NH₂ + H₂O Q.2 Describe the arrangement of bonds in the amino acid H₂NCH₂COOH 2814 around... the N atom in the NH_2 the C atom in the COOH the C atom in the CH_2 What change, if any, takes place to the arrangement around the N if the amino acid is treated with dilute acid? Peptide formation • amino acids can join up together to form peptides via an amide or peptide link #### **PEPTIDES** Structure Sequences of amino acids joined together by peptide links 2 amino acids joined dipeptide 3 amino acids joined tripeptide many amino acids joined polypeptide $egin{array}{c} \mathsf{H} \\ -\mathsf{C} & \mathsf{N} \\ \mathsf{O}_{\mathsf{Q}^-} \end{array}$ the peptide link Hydrolysis - attack takes place at the slightly positive C of the C=O - the C-N bond next to the C=O is broken - · hydrolysis with just water is not feasible - · hydrolysis in alkaline/acid conditions is quicker - hydrolysis in acid/alkaline conditions (e.g. NaOH) will produce salts | with | | NH ₂ | will become | NH ₃ +Cl⁻ | |------|------|-----------------|-------------|----------------------| | | H+ | NH ₂ | will become | NH ₃ + | | | NaOH | COOH | will become | COO⁻ Na+ | | | OH⁻ | COOH | will become | COO- | - Q.3 Draw structural isomers for the compounds produced when - H₂NCH₂CONHCH(CH₃)COOH is hydrolysed by water - $H_2NCH_2CONHC(CH_3)_2COOH$ is hydrolysed in **acidic** solution - *H*₂*NCH*₂*CONHCH*(*CH*₃)*COOH* is hydrolysed in **alkaline** solution - Q.4 Write out possible sequences for the **original** peptide if the hydrolysis products are - 1 mole of amino acid A, 1 mole of amino acid B and 1 mole of amino acid C - 1 mole of amino acid A, 2 moles of amino acid B and 1 mole of amino acid C - 1 mole of amino acid A, 1 mole of B, 1 mole of C, 1 mole of D and 1 mole of E Proteins - · polypeptides with high molecular masses - chains can be lined up with each other - the C=O and N-H bonds are polar due to a difference in electronegativity - hydrogen bonding exists between chains dotted lines -----represent hydrogen bonding # AMIDES - RCONH₂ #### Structure of amides **Nomenclature** White crystalline solids named from the corresponding acid (remove oic acid, add amide) CH₃CONH₂ ethanamide (acetamide) C₂H₅CONHC₆H₅ N - phenyl propanamide - the N tells you the substituent is on the nitrogen Nylons are examples of polyamides. (see under polymers) **Preparation** Acyl chloride + ammonia (see above) ## **Chemical Properties** Hydrolysis general reaction CH₃CONH₂ + H₂O ---> CH₃COOH + NH₃ acidic soln. $CH_3CONH_2 + H_2O + HCI \longrightarrow CH_3COOH + NH_4CI$ alkaline soln. CH₃CONH₂ + NaOH ---> CH₃COONa + NH₃ Identification Warming an amide with dilute sodium hydroxide solution and testing for the evolution of ammonia using moist red litmus paper is used as a simple test for amides. Reduction Reduced to primary amines: CH₃CONH₂ + 4[H] ---> CH₃CH₂NH₂ + H₂O