AMINES

2814

Structure Contain the NH_2 group.

Classification primary (1°) amines

secondary (2°) amines tertiary (3°) amines

quarternary (4°) ammonium salts.

Aliphatic methylamine, ethylamine, dimethylamine

Aromatic the NH₂ group is **attached directly** to the benzene ring (phenylamine)

1°

Nomenclature Named after the groups surrounding the nitrogen + amine

e.g. $C_2H_5NH_2$ ethylamine $(CH_3)_2NH$ dimethylamine

(CH₃)₃N trimethylamine C₆H₅NH₂ phenylamine (aniline)

Q.1 Draw structures for all amines of molecular formula $C_4H_{11}N$. Classify them as primary, secondary or tertiary amines.

Properties The presence of the lone pair in 1°, 2° and 3° amines makes them ...

- Lewis bases they can be lone pair donors
- Brønsted-Lowry bases they can be proton acceptors
- Nucleophiles they provide a lone pair to attack a positive (electron deficient) centre

Physical properties

Boiling point • Boiling points increase with molecular mass.

 Amines have higher boiling points than corresponding alkanes because of intermolecular hydrogen bonding.

• Quarternary ammonium salts are ionic - exist as salts.

 $\begin{array}{ccc} C & C \\ \vdots N^{\frac{\delta-}{\epsilon}} H^{\frac{\delta+}{\epsilon}} & \vdots N^{\frac{\delta-}{\epsilon}} H^{\delta+} \\ \vdots & \vdots & \vdots \\ H^{\delta+} & H^{\delta+} & H^{\delta+} \end{array}$

intermolecular hydrogen bonding in amines

Solubility • Soluble in organic solvents.

- Lower mass compounds are soluble in water due to hydrogen bonding with the solvent.
- Solubility decreases as the molecules get heavier.

$$\begin{matrix} C \\ \vdots N^{\frac{\delta-}{\delta}} H^{\frac{\delta+}{\delta}} & \vdots \overset{\vdots}{O}^{\frac{\delta-}{\delta}} H^{\delta+} \\ H^{\delta+} & H^{\delta+} \end{matrix}$$

hydrogen bonding between amines and water

Basic properties

Bases The **lone pair** on nitrogen makes amines **basic**. RNH₂

Strength

- depends on the availability of the lone pair and thus its ability to pick up protons
- the greater the electron density on the N, the better its ability to pick up protons
- this is affected by the groups attached to the nitrogen.
- electron withdrawing substituents (e.g. benzene rings) decrease basicity as the electron density on N is lowered.

 electron releasing substituents (e.g. CH₃ groups) increase basicity as the electron density is increased

$$CH_3$$
— NH_2

draw arrows to show the electron density movement

- *Measurement* the strength of a weak base is depicted by its pK_b value
 - the smaller the pK_b the stronger the base.
 - the pK_a value can also be used; it is worked out by applying pK_a + pK_b = 14.
 - the smaller the pK_b, the larger the pK_a.

Compound	Formula	pK_b	Comments
ammonia	NH_3	4.76	
methylamine	CH_3NH_2	3.36	methyl group is electron releasing
phenylamine	$C_6H_5NH_2$	9.38	electrons delocalised into the ring

strongest base methylamine > ammonia > phenylamine weakest base

Reactions

Amines which dissolve in water produce weak alkaline solutions

$$CH_3NH_{2(g)} + H_2O_{(l)} \rightleftharpoons CH_3NH_3^+_{(aq)} + OH^-_{(aq)}$$

• Amines react with acids to produce salts.

 $C_6H_5NH_{2(1)}$ + $HCI_{(aq)}$ ---> $C_6H_5NH_3^+CI_{(aq)}^-$ phenylammonium chloride

This reaction allows one to dissolve an amine in water as its salt.

Addition of aqueous sodium hydroxide liberates the free base from its salt

$$C_6H_5NH_3^+Cl_{(aq)}^-$$
 + NaOH_(aq) ---> $C_6H_5NH_{2(l)}$ + NaCl_(aq) + H₂O_(l)

Nucleophilic Character

Due to their lone pair, amines react as nucleophiles with

haloalkanes forming substituted amines nucleophilic substitution
 acyl chlorides forming N-substituted amides addition-elimination

Haloalkanes Amines can be prepared from haloalkanes (see below and previous notes).

Reagent Aqueous, alcoholic ammonia

Conditions Reflux in aqueous, alcoholic solution under pressure

Product Amine (or its salt due to a reaction with the acid produced)

Nucleophile Ammonia (NH₃)

Equation $C_2H_5Br + NH_3_{(aq/alc)} \longrightarrow C_2H_5NH_2 + HBr (or C_2H_5NH_3^+Br^-)$

Problem

The amine produced is also a nucleophile (lone pair on the N) and can attack another molecule of haloalkane to produce a secondary amine. This in turn is a nucleophile and can react further producing a tertiary amine and, eventually an ionic quarternary amine.

 $C_2H_5NH_2 + C_2H_5Br \longrightarrow HBr + (C_2H_5)_2NH$ diethylamine, a 2° amine

 $(C_2H_5)_2NH + C_2H_5Br \longrightarrow HBr + (C_2H_5)_3N$ triethylamine, a 3° amine

 $(C_2H_5)_3N$ + C_2H_5Br ---> $(C_2H_5)_4N^+Br^-$ tetraethylammonium bromide, a 4° salt

Uses

Quarternary ammonium salts with long chain alkyl groups e.g. [CH₃(CH₂)₁₇]₂N⁺(CH₃)₂Cl⁻ are used as cationic surfactants in fabric softening.

Preparation

from haloalkanes Nucleophilic substitution using ammonia ... see above

nitriles Reduction of nitriles using Li⁺AlH₄⁻ in dry ether

e.g. $CH_3CH_2CN + 4[H] \longrightarrow CH_3CH_2CH_2NH_2$

nitro Reduction by refluxing with tin and conc. hydrochloric acid compounds

e.g. $C_6H_5NO_2 + 6[H] \longrightarrow C_6H_5NH_2 + 2H_2O$

AMINO ACIDS

Structure

Amino acids contain 2 functional groups

amine NH₂carboxyl COOH

 $\begin{matrix} H^{\delta+} \\ \mid_{\delta-} \\ -N \vdots \\ \mid_{\delta+} \\ H^{\delta+} \end{matrix}$

 $\begin{array}{c} O^{\delta-} \\ -C \\ O-H \end{array}$

Amine

Carboxyl

They all have a similar structure - the identity of R₁ and R₂ vary

Optical Isomerism

Amino acids can exist as optical isomers if they have different R₁ and R₂ groups

- optical isomers exist when a molecule contains an asymmetric carbon atom
- asymmetric carbon atoms have four different atoms or groups attached
- two isomers are formed
- one rotates plane polarised light to the left, one rotates it to the right
- glycine doesn't exhibit optical isomerism as there are two H attached to the C atom

Zwitterions

- a zwitterion is a dipolar ion
- it has a plus and a minus charge in its structure
- · amino acids exist as zwitterions
- produces increased inter-molecular forces
- melting and boiling points are higher

a zwitterion

Acid/base properties

- amino acids possess acidic and basic properties due to their functional groups
- they will form salts when treated with acids or alkalis.

Basic properties:

react with H+ HOOCCH₂NH₂ + H+ ---> HOOCCH₂NH₃+
HCI HOOCCH₂NH₂ + HCI ---> HOOCCH₂NH₃+ CI⁻

Acidic properties:

react with OH⁻ HOOCCH₂NH₂ + OH⁻ ---> OOCCH₂NH₂ + H₂O

NaOH HOOCCH₂NH₂ + NaOH ---> Na⁺OOCCH₂NH₂ + H₂O

Q.2

Describe the arrangement of bonds in the amino acid H₂NCH₂COOH

2814

around... the N atom in the NH_2 the C atom in the COOH the C atom in the CH_2

What change, if any, takes place to the arrangement around the N if the amino acid is treated with dilute acid?

Peptide formation

• amino acids can join up together to form peptides via an amide or peptide link

PEPTIDES

Structure

Sequences of amino acids joined together by peptide links

2 amino acids joined dipeptide
 3 amino acids joined tripeptide
 many amino acids joined polypeptide

 $egin{array}{c} \mathsf{H} \\ -\mathsf{C} & \mathsf{N} \\ \mathsf{O}_{\mathsf{Q}^-} \end{array}$

the peptide link

Hydrolysis

- attack takes place at the slightly positive C of the C=O
- the C-N bond next to the C=O is broken
- · hydrolysis with just water is not feasible
- · hydrolysis in alkaline/acid conditions is quicker
- hydrolysis in acid/alkaline conditions (e.g. NaOH) will produce salts

with		NH ₂	will become	NH ₃ +Cl⁻
	H+	NH ₂	will become	NH ₃ +
	NaOH	COOH	will become	COO⁻ Na+
	OH⁻	COOH	will become	COO-

- Q.3 Draw structural isomers for the compounds produced when
 - H₂NCH₂CONHCH(CH₃)COOH is hydrolysed by water
 - $H_2NCH_2CONHC(CH_3)_2COOH$ is hydrolysed in **acidic** solution
 - *H*₂*NCH*₂*CONHCH*(*CH*₃)*COOH* is hydrolysed in **alkaline** solution

- Q.4 Write out possible sequences for the **original** peptide if the hydrolysis products are
 - 1 mole of amino acid A, 1 mole of amino acid B and 1 mole of amino acid C
 - 1 mole of amino acid A, 2 moles of amino acid B and 1 mole of amino acid C
 - 1 mole of amino acid A, 1 mole of B, 1 mole of C, 1 mole of D and 1 mole of E

Proteins

- · polypeptides with high molecular masses
- chains can be lined up with each other
- the C=O and N-H bonds are polar due to a difference in electronegativity
- hydrogen bonding exists between chains

dotted lines -----represent hydrogen bonding

AMIDES - RCONH₂

Structure of amides

Nomenclature

White crystalline solids named from the corresponding acid

(remove oic acid, add amide)

CH₃CONH₂ ethanamide (acetamide)

C₂H₅CONHC₆H₅ N - phenyl propanamide - the N tells you

the substituent is on the nitrogen

Nylons are examples of polyamides. (see under polymers)

Preparation Acyl chloride + ammonia (see above)

Chemical Properties

Hydrolysis general reaction CH₃CONH₂ + H₂O ---> CH₃COOH + NH₃

acidic soln. $CH_3CONH_2 + H_2O + HCI \longrightarrow CH_3COOH + NH_4CI$

alkaline soln. CH₃CONH₂ + NaOH ---> CH₃COONa + NH₃

Identification Warming an amide with dilute sodium hydroxide solution and testing for the evolution

of ammonia using moist red litmus paper is used as a simple test for amides.

Reduction Reduced to primary amines: CH₃CONH₂ + 4[H] ---> CH₃CH₂NH₂ + H₂O