Unit F324 Rings, Polymers and Analysis – Medium banded Candidate Style Answer

Introduction

OCR has produced these candidate style answers to support teachers in interpreting the assessment criteria for the new GCE specifications and to bridge the gap between new specification release and availability of exemplar candidate work.

This content has been produced by senior OCR examiners, with the input of Chairs of Examiners, to illustrate how the sample assessment questions might be answered and provide some commentary on what factors contribute to an overall grading. The candidate style answers are not written in a way that is intended to replicate student work but to demonstrate what a "medium" or "high" response might include, supported by examiner commentary and conclusions.

As these responses have not been through full moderation and do not replicate student work, they have not been graded and are instead, banded "medium" or "high" to give an indication of the level of each response.

Please note that this resource is provided for advice and guidance only and does not in any way constitute an indication of grade boundaries or endorsed answers.

(b) Compound A, shown below, contributes to the smell and taste of black tea and is a component in jasmine oil.		
(i) Deduce the molecular formula of com	pound A .	
	[1]	
Candidate style answer	Examiner's commentary	
C ₁₃ H ₁₈ O ₃		
(ii) Compound <u>A</u> contains several functional groups. Identify, by <u>name</u> , the functional groups in compound A.		
Identify, by <u>name</u> , the functional groups	in compound A. [3]	
Identify, by <u>name</u> , the functional groups Candidate style answer	in compound A. [3] <i>Examiner's commentary</i>	
Identify, by <u>name</u> , the functional groups Candidate style answer ketone, C=C and ester	in compound A. [3] <i>Examiner's commentary</i>	
Identify, by name, the functional groups Candidate style answer ketone, C=C and ester (iii) Compound A is a stereoisomer. On the structure above, • mark each feature responsible for stere • label each feature with the type of stere	in compound A. [3] <i>Examiner's commentary</i> preoisomerism with an asterisk, * preoisomerism. [2]	
Identify, by name, the functional groups Candidate style answer ketone, C=C and ester (iii) Compound A is a stereoisomer. On the structure above, • mark each feature responsible for stere • label each feature with the type of stere Candidate style answer	in compound A. [3] <i>Examiner's commentary</i> preoisomerism with an asterisk, * preoisomerism. [2] <i>Examiner's commentary</i>	

(iv) Outline two important factors that pharmaceutical companies need to consider when manufacturing chiral compounds for use as medicines.

	[2]
Candidate style answer	Examiner's commentary
There are often side effects in the other isomer like in thalidomide.	Questions often use a complex molecule to assess understanding of basic concepts in organic chemistry. The responses here are mixed, showing that the candidate doesn't understand some key points. In the molecular formula, two hydrogen atoms have been missed, probably those at the carbon atoms bonded to three other carbon atoms. There is poor exam technique in (ii): as names were asked for, C=C would not score. In (iii), the candidate has completely missed the optical isomerism. With 2 marks being available, the candidate should have realised that more was required. In (iv), the candidate could recall thalidomide but there is little else. This part was not difficult but the specification content had not been learnt.

[Total: 16]

 Chemists have developed degradable polymers to reduce the quantity of plastic waste being disposed off in landfill sites. Polymer D is more likely to be a 'degradable polymer' than polymer C. Suggest two reasons why. 	
Candidate style answer	Examiner's commentary
The ester group in D degrades	The candidate has no idea! Again, the material has not been learnt.

(iii) The mixture of tripeptides can be analysed by using gas chromatography, coupled with mass spectrometry. Summarise how each method contributes to the analysis.

[3]

Candidate style answer	Examiner's commentary
Gas chromatography separates the tripeptides. The mass spectrometer alanyses and then a database is used to identify the components.	The candidate managed successfully to combine glycine with phenylalanine. In attempting to connect proline, the candidate made the common mistake of finishing up with a COON connection. The candidate then seemed to rely upon the conventional amino acid general formula for attaching proline. The candidate should have realised that this response is incorrect as the nitrogen atom is shown with 4, rather than 3, bonds. In (ii), the candidate had no idea and seemed to just guess. The response in (iii) contained the key features of GC-MS. (Pity about the spelling.)

[Total: 13]

- 3 Propanal, CH_3CH_2CHO , can be used in the synthesis of organic compounds.
- (a) CH₃CH₂CHO reacts with NaBH₄ in a nucleophilic addition reaction. The nucleophile can be represented as a hydride ion, H⁻. A mechanism for the reaction is shown below.

(i) Add 'curly arrows' to the mechanism to show how the intermediate reacts with the water molecule in step 2. [2]

 Candidate style answer
 Examiner's commentary

 See diagram above.
 Examiner's commentary

(ii) Draw the structure of the organic product in the box above. [1]

Candidate style answer	Examiner's commentary
See diagram above.	
(iii) What is meant by the term <i>nucleophile</i> ?	

[1]

A nucleophile loves the nucleus	
Candidate style answer	Examiner's commentary

(iv) Describe, in words, exactly what is happening to the electron pairs and bonds in step 1 of the mechanism above.

[3]

Candidate style answer	Examiner's commentary
The electron pairs get attracted and form bonds. Bonds get broken as well. A curly arrow shows how electron pairs move.	In (i), the candidate has obviously tried to learn this mechanism and has shown the curly arrows from the organic intermediate with precision. Unfortunately, the second curly arrow is imprecise and should have been shown starting from the H–O bond. The definition in (iii) is poor and seems to have been made up. This has not been learnt. The response to (iv) reinforces that the candidate does not understand what happens to electron pairs and bonds during a mechanism. Despite this, the final statement shows some recall that has stuck, even if it has not been applied.

) The flowchart below represents the two-stage synthesis of compound F from propanal.	
CH ₃ CH ₂ CHO	compound F
Deduce the identity of compound E.	
Draw its displayed formula below.	[1]
Candidate style answer	Examiner's commentary
	The candidate has some idea of how to interpret a H-NMR spectrum and has identified correctly the relevance of the triplet/quartet splitting combination. Unfortunately the pointer in the question to refer to chemical shifts has been ignored completely. The suggested structure for the unknown compound is a competent attempt based on the candidates partial analysis. However, the candidate has shown the ester the 'wrong way around', an error that would not have been made had chemical shifts been considered. The candidate has then correctly shown the structure for F in part (c). Had the candidate compared this structure to their answer to (b), they would have seen that something was wrong with their H-NMR analysis.

[Total: 14]

4 Benzene reacts with chlorine in the presence of a halogen carrier, such as AICI ₃ .		
(a)(i) Write the equation for the reaction of benzene with chlorine.		
		[1]
Candidate style answer		Examiner's commentary
C_6H_6 + CI_2 \longrightarrow C_6H_5C	+ HCI	
(ii) How does the halogen carrier allow the r	eaction to take pla	ace?
		[1]
Candidate style answer	Examiner's comm	entary
It carries the halogen		
(iii) Outline a mechanism for this reaction.		
Include curly arrows and relevant dipoles.		[1]
		ניין
Candidate style answer		Examiner's commentary
CI ⁺	CI	
$ ()\rangle \longrightarrow (+) \longrightarrow$	→ ()	
(iv) State the name of this mechanism		
(iv) State the name of this mechanism.		
		[1]
Candidate style answer	Examiner's comm	entary
Electrophilic Substitution	A correct equation	n in (i) followed by what is
	The attempted me	echanism in part (iii) shows
	some understand	ing, as the first curly arrow and
	second curly arrow	w is the wrong way around
	and rather non-co	mmittal. The candidate has H^+ as the product if the
	second step. This	is a stock mechanism that
	delivers easy mar	ks, if learnt.

(b) In contrast to benzene, the reaction of an alkene with bromine does not need a halogen carrier.

Compare the different reactivities of benzene and alkenes towards chlorine.

[3]

Candidate style answer	Examiner's commentary
In benzene, the electrons are delocalised. In alkenes, the electrons aren't delocalised because there's a double bond. Alkenes are more reactive because of the double bond.	The comparison in the reactivities of benzene and alkenes with bromine is sparse, the candidate seeming to just remember that benzene has delocalised electrons. The second sentence is simply the reverse statement of the first and the third sentence and repeats information given in the question. Examination questions often ask candidates to compare the reactivity of bromine with benzene, alkenes and phenols. This is another example of knowledge and understanding that needs to be learnt.

[Total: 10]

5	Concentrated sulfuric acid reacts with m one of the products.	any organic compounds, forming water as
	For example, sulfuric acid dehydrates et $C_2H_5OH \longrightarrow C_2H_4 + H_2O$	hanol by eliminating water to form ethane.
	In each part below, sulfuric acid is a deh	ydrating agent.
(a)	(a) Sulfuric acid dehydrates methanoic acid to form a gas, G, with the same molar mass as ethene.	
	Suggest the identity of G and write an ed	quation for the reaction. [2]
Can	didate style answer	Examiner's commentary
G is HCO	carbon monoxide. DOH \longrightarrow CO + H ₂ O	

(b) Sulfuric acid dehydrates sucrose, $C_{12}H_{22}O_{11}$, to form a black solid, H.	
Suggest the identity of H and write an equation for the reaction.	
Candidate style answer	Examiner's commentary
H is $C_{12}H_{20}O_{10}$ because water has been lost $C_{12}H_{22}O_{11} \longrightarrow C_{12}H_{20}O_{10} + H_{2}O$	

[Total: 7]

Overall banding Medium

The responses from this candidate echo those of many. Organic chemistry must be learnt and, with this learning, the understanding will come. This candidate was poorly prepared and frittered many marks away. There are some intuitive responses that suggest that there is some hidden potential sealed up that can be released with a better knowledge base.

There were also instances in which the candidate had ignored some of the information supplied in the question. Information is usually supplied for a reason and perhaps the candidate could have marked off data as it had been used so as to highlight what remained.

[Total: 60]