Unit F325 Equilibria, Energetics and Elements – High banded Candidate Style Answer

Introduction

OCR has produced these candidate style answers to support teachers in interpreting the assessment criteria for the new GCE specifications and to bridge the gap between new specification release and availability of exemplar candidate work.

This content has been produced by senior OCR examiners, with the input of Chairs of Examiners, to illustrate how the sample assessment questions might be answered and provide some commentary on what factors contribute to an overall grading. The candidate style answers are not written in a way that is intended to replicate student work but to demonstrate what a "medium" or "high" response might include, supported by examiner commentary and conclusions.

As these responses have not been through full moderation and do not replicate student work, they have not been graded and are instead, banded "medium" or "high" to give an indication of the level of each response.

Please note that this resource is provided for advice and guidance only and does not in any way constitute an indication of grade boundaries or endorsed answers.

1 One cause of low-level smog is the reaction of ozone, O_3 , with ethane, C_2H_4 . The smog contains methanal, HCHO(g).

The equation for methanal production is shown below as equation 1.1.

 $O_3(g) + C_2H_4(g) \longrightarrow 2HCHO(g) + \frac{1}{2}O_2(g)$

(a) The rate of the reaction was investigated, using a series of different concentrations of either $C_2H_4(g)$ or $O_3(g)$, by measuring the initial rate of formation of HCHO(g).

The results are shown below.

experiment	[O ₃ (g)] / 10 ⁻⁷ mol dm ⁻³	[C₂H₄(g)] / 10 ⁻⁸ mol dm ⁻³	initial rate / 10 ⁻¹² mol dm ⁻³ s ⁻¹
1	0.5	1.0	1.0
2	2.0	1.0	4.0
3	4.0	2.0	16.0

(i) Analyse and interpret the results to deduce the order of reaction of each reactant and the rate equation.

Explain your reasoning.

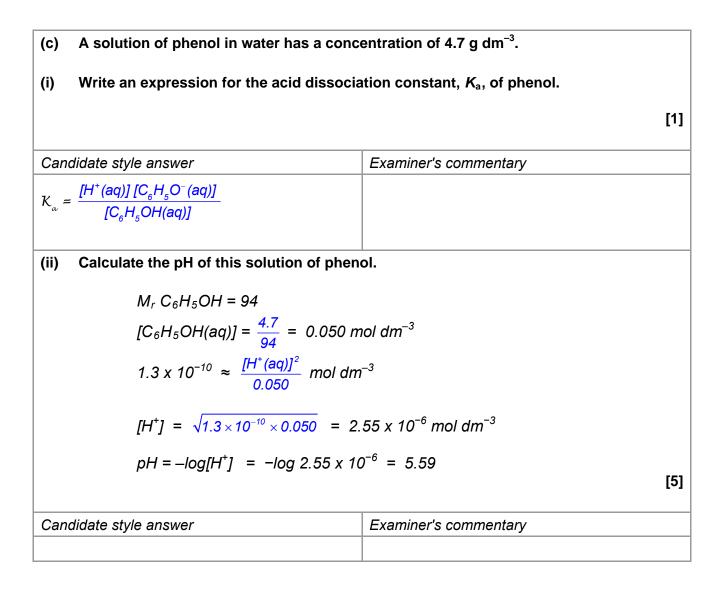
[5]

e

Or a didata at da ana ana	[0]
Candidate style answer	Examiner's commentary
Experiment 2 has 4 times the	
concentration of O_3 as Experiment 1 and	
the rate increases by 4. So the order is 1	
with respect to O	
Experiment 3 has double the	
concentration of $C_{\mathcal{H}}$ and $O_{\mathcal{A}}$ as	
Experiment 2 and the rate has	
quadrupled. O, is first order anyway so	
$C_{\mathcal{H}_{4}}$ must also be first order	
So the rate equation is: rate = $k[0]$	
$\begin{bmatrix} C, \mathcal{H}_{s} \end{bmatrix}$	
(ii) Calculate the value of the rate constant a	and state the units.
	[3]

	La La	′ ⊥
Candidate style answer	Examiner's commentary	
rate = $k [\mathcal{O}_3] [\mathcal{C}_2 \mathcal{H}_4]$		
$so k = \frac{rate}{[O_3][C_2H_4]}$		
$= k = \frac{1.0 \times 10^{5/2}}{(0.5 \times 10^{57}) \times (1.0 \times 10^{58})} = 2.0 \times 10^{3}$		
$unity = k = \frac{mol \ dm^{\tilde{s}3}s^{\tilde{s}1}}{(mol \ dm^{\tilde{s}3}) \times (mol \ dm^{\tilde{s}3})} = dm^3$		
$mol^{1}s^{1}$		
rate constant = $2.0 \times 10^{\circ}$		
units dm² mot² s²		

 (iii) Using equation 1.1, deduce the initial rate of formation of O₂(g) in experiment 1. Explain your reasoning. 		
2 mol $O_{_3}$ form 0.5 moles $O_{_2}$		
Therefore rate of formation of $O_2 = one$		
quarter rate of disappearance $of O_3$.		
In experiment 1, rate = $\frac{1.0 \times 10^{\$12}}{4}$ = 2.5 x		
4 10-13		
answer = 2.5×10^{13} mol dm ³ s ¹		
(iv) The experiment was repeated at a higher	r temperature.	
How would the new conditions affect the constant?	e rate of the reaction and the value of the rate	
	[1]	
Candidate style answer	Examiner's commentary	


(b)	Nitrogen monoxide, NO, is involved in formation of ozone at low levels.		
Nitrogen monoxide is produced by combustion in car engines. Ozone is then formed following the series of reactions shown below. $NO(g) + \frac{1}{2}O_2(g) \longrightarrow NO_2(g)$ $NO_2(g) \longrightarrow NO(g) + O(g)$ $O_2(g) + O(g) \longrightarrow O_3(g)$			
	Write the overall equation for this read Identify the catalyst and justify your a	-	
Can	-	nswer.	
	Identify the catalyst and justify your a	nswer. [3]	

[Total: 13]

The rate increases so k must also increase

2 Phenol, C_6H_5OH , is a powerful disinfectant and antiseptic. Phenol is a weak Brønsted–Lowry acid. $C_6H_5OH(aq) \rightleftharpoons H^{+}(aq) + C_6H_5O^{-}(aq)$ $K_a = 1.3 \times 10^{-10} \text{ mol dm}^{-3}$ Define the following terms: (a) (i) A Brønsted–Lowry acid, [1] Candidate style answer Examiner's commentary A proton donor (ii) A weak acid. [1] Candidate style answer Examiner's commentary An acid that partially dissociates

When phenol is mixed with aqueous sodium hydroxide, an acid-base reaction takes (b) place. C₆H₅OH(aq) + OH⁻(aq) ← C₆H₅O⁻(aq) + H₂O(I) In the available spaces, label one conjugate acid-base pair as acid 1 and base 1, label the other conjugate acid-base pair as acid 2 and base 2. [1] Candidate style answer Examiner's commentary $C_6H_5OH(aq)$ + \rightleftharpoons C₆H₅O⁻(aq) + H₂O(l) OH⁻(aq) acíd 1 acíd 2 base 2 base 1

(d) As part of an investigation, a student needed to prepare a buffer solution with a pH value of 8.71. From the K_a value of phenol, the student thought that a mixture of phenol and sodium phenoxide could be used to prepare this buffer solution.

The student decided to use a 0.200 mol dm⁻³ solution of phenol, mixed with an equal volume of sodium phenoxide.

Use your knowledge of buffer solutions to determine the concentration of sodium phenoxide solution that the student would need to mix with the 0.200 mol dm⁻³ phenol solution.

[3]

Candidate style answer	Examiner's commentary
$[\mathcal{H}^{+}(aq)] = 10^{-p\mathcal{H}} = 10^{-8.71} = 1.99 \times 10^{-9} \text{ mol}$ dm^{-3}	The correct answer has been obtained but rather luckily.
$\begin{aligned} \mathcal{K}_{\alpha} &= \frac{[H^{+}(aq)] [C_{6}H_{5}O^{-}(aq)]}{[C_{6}H_{5}OH(aq)]} \\ &\therefore [C_{6}H_{5}O^{-}(aq)] = \frac{K_{a} \times [C_{6}H_{5}OH(aq)]}{[H^{+}(aq)]} = \\ \frac{1.3 \times 10^{-10} \times 0.200}{1.99 \times 10^{-9}} \\ &= 0.13 \text{ mol } dm^{3} \end{aligned}$	As two solutions were mixed together, the actual concentrations of each component in the buffer solution would have been less than the original concentrations. But because the volumes mixed were equal, the ratio of the concentrations is the same. Had the volumes been different, this would have introduced an error.

(e) Hexylresorcinol is an antiseptic used in solutions for cleansing wounds and in mouthwashes and throat lozenges.

The structure of hexylresorcinol is shown below.

OH OH OH CH₂(CH₂)₄CH₃

Identify a chemical that could be added to hexylresorcinol to make a buffer solution. Explain your answer.

	L·J
Candidate style answer	Examiner's commentary
Add some sodium ethanoate because a	Excellent responses overall.
buffer is a mixture of a weak acid and its	
salt	question. What is required is a salt of
	hexylresorcinol, not just the salt of any weak
	acid.

[Total: 13]

[1]

the manufacture of methanol. A dynamic equilibrium was set up between carbon monoxide, CO, hydrogen, H₂, and methanol, CH₃OH, in a 2.0 dm³ sealed vessel. The equilibrium is shown by equilibrium 3.1 below. $CO(g) + 2H_2(g) \Rightarrow CH_3OH(g)$ equilibrium 3.1 The number of moles of each component at equilibrium is shown below: component CO(g) $H_2(g)$ CH₃OH(g) number of moles 5.20 × 10⁻⁵ 6.20×10^{-3} 4.80×10^{-2} at equilibrium State two features of a system that is in dynamic equilibrium. (a) [2] Candidate style answer Examiner's commentary 1. The rate of forward reaction is the same as the rate of reverse reaction 2. The concentrations of reactants and products are constant Write an expression for K_c for this equilibrium system. (i) [1] Candidate style answer Examiner's commentary $\mathcal{K}_{c} = \frac{[CH_{3}OH]}{[CO][H_{2}]^{2}}$ (ii) Calculate K_c for this equilibrium. State the units. [4] Candidate style answer Examiner's commentary $K_{c} = \frac{5.20 \times 10^{55}}{6.20 \times 10^{53} \times (4.80 \times 10^{52})^{2}} = 3.64$ Unfortunately the candidate has used the molar values from the table and has not converted these to concentrations in mol dm^{-3} . As the total volume of the container was 2 dm^3 , each molar unity: $\frac{\text{mol } dm^{\$3}}{\text{mol } dm^{\$3} \times (\text{mol } dm^{\$3})^2} = dm^{\$} \text{ mol}^{2}$ value should have been divided by 2. The correct calculated value of K_c is 14.56. K = 3.64 units: dm mob

Syngas is a mixture of carbon monoxide and hydrogen gases, used as a feedstock for

3

(c) The pressure was increased whilst keeping the temperature constant. The mixture was left to reach equilibrium. The equilibrium position of equilibrium 3.1 shifted to the right.

(i) Explain why the equilibrium position shifted to the right.

[1]

Candidate style answer	Examiner's commentary	
There are fewer moles of gas on the right hand side		
(ii) What is the effect, if any, on the value of K_c ?		
	[1]	
Candidate style answer	Examiner's commentary	
None		

(d) The temperature was increased whilst keeping the pressure constant. The mixture was left to reach equilibrium. The value of K_c for equilibrium 3.1 decreased.

(i) Explain what happened to the equilibrium position in equilibrium 3.1.

[1]Candidate style answerExaminer's commentaryThe equilibrium position moves to the left
hand side because the decreased K, value
means that the products (on the top of
the expression) will decrease and the
reactants (on the bottom of the
expression) will increase.(ii) Deduce the sign of the enthalpy change to the forward reaction shown in equilibrium
3.1.

Explain your reasoning.

[1]

Candidate style answer	Examiner's commentary
The enthalpy change is negative because high temperature favours the endothermic direction	

(e) Methanol can be used as an additive to petrol.

(i) Write an equation for the complete combustion of methanol, CH₃OH.

Candidate style answerExaminer's commentary $CH3OH + 1\frac{1}{2}O2 \longrightarrow CO2 + 2H2O$ (ii)Suggest why methanol is added to petrol.[1]Candidate style answerMethanol has got oxygen in it so it adds
oxygen to the fuel and makes it burn
better.Examiner's commentary

[Total: 13]

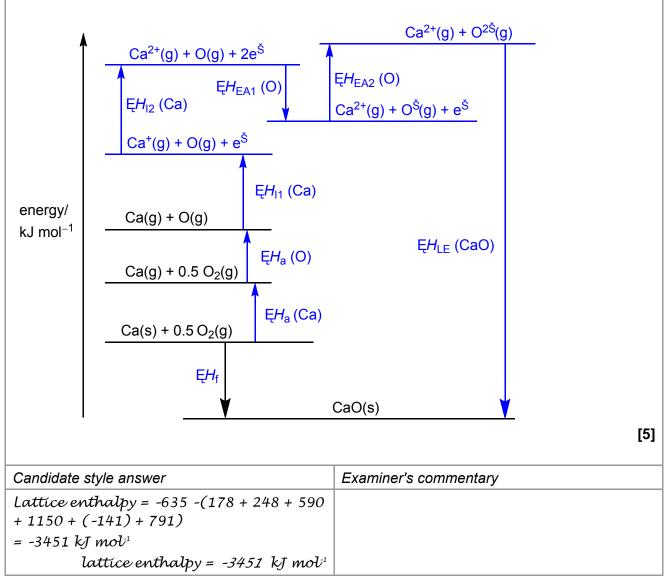
[1]

Table 4.1 shows the enthalpy changes needed to calculate the lattice enthalpy of calcium oxide, CaO.

Table 4.1		
process	enthalpy change/ kJ mol ^{−1}	
first ionisation energy of calcium	+590	
second ionisation energy of calcium	+1150	
first electron affinity of oxygen	-141	
second electron affinity of oxygen	+ 791	
enthalpy change of formation of calcium oxide	-635	
enthalpy change of atomisation of calcium	+178	
enthalpy change of atomisation of oxygen	+248	

(a) (i) Explain why the second ionisation energy of calcium is **more endothermic** than the first ionisation energy of calcium.

	[2]
Candidate style answer	Examiner's commentary
Ca ⁺ is smaller than a Ca atom so there is more attraction from the nucleus	


(ii) Suggest why the second electron affinity of oxygen is positive.

[2]

Candidate style answer	Examiner's commentary
The O ⁻ ion is negative and will repel an electron because they are both negative.	The responses in both part of (a) are only partway there. There is no discussion of energy or a response that explains why the second ionisation energy is greater or why the electron affinity is positive. In (i), the consequence of the increased attraction is that more energy is needed to remove an electron. In (ii), the candidate should have stated that energy is needed to overcome the repulsion between the negative ion and the negative electron.

Use the data in Table 4.1 to calculate the lattice enthalpy of calcium oxide.

(c) The lattice enthalpies of calcium oxide and magnesium oxide are different.		
Comment on this difference. In your answer you should make clear how the sizes of the lattice enthalpies are related to any supporting evidence. [3]		
Candidate style answer	Examiner's commentary	
Mg ²⁺ is larger than Ca ²⁺ so has a weaker attraction for O ²⁻ . This means that the lattice enthalpy for MgO will be less than for CaO.	Lattice enthalpies are negative values and use of the words 'more' and 'less' should not be used unless qualified for comparing negative numbers (–2 is actually 'more' than –4!). The candidate should have stated that the lattice enthalpy of MgO is less exothermic or less negative'. By using just 'less', this is a case is which 'less means more'! .	

feasible that calcium oxide could be reduced by carbon as shown in equation 4.1. CaO(s) + C(s) \rightarrow Ca(s) + CO(g) equation 4.1 Use the data in the table below to help you answer parts (i)–(iii) below. $\boxed{\Delta H_{1}^{\circ}/kJ \text{ mol}^{-1} - 635 0 0 - 110}{S^{\circ}/J \text{ K}^{-1} \text{ mol}^{-1} 39.7 5.7 41.4 197.6}$ i) Calculate the standard enthalpy change for the CaO reduction in equation 4.1. [1] Candidate style answer $\Delta H = \text{producty} - \text{reactanty}$ $= -110 - (-635) = 525 \text{ kJ mol}^{1}$ $\Delta H^{*} = 525 \text{ kJ mol}^{1}$ [1] Calculate the standard entropy change for the CaO reduction in equation 4.1. [1] Candidate style answer $\Delta S = \text{producty} - \text{reactanty}$ $= 41.4 + 197.6 - (39.7 + 5.7) = 193.6 J \text{ K}^{1}$ mol^{1} $\Delta S^{\circ} = 193.6 J \text{ K}^{1} \text{ mol}^{1}$ [1] Calculate the minimum temperature at which the carbon reduction in equation 4.1 is feasible. [2] Candidate style answer $\Delta G = \Delta H - T\Delta S$ $To be feasible, \Delta G < 0$ $The minimum temperature is when 0 = M^{1} - T\Delta S$ $\Delta S = \frac{193.6}{1000} = 0.1936 \text{ kJ mol}^{1}$ $\Delta S = \frac{193.6}{1000} = 0.1936 \text{ kJ mol}^{1}$			naturally-occurring ores. Metals such as calcium and magnesium are normally extracted by electrolysis but it is feasible that calcium oxide could be reduced by carbon as shown in equation 4.1.					
$CaO(s) + C(s) \rightarrow Ca(s) + CO(g)$ equation 4.1Use the data in the table below to help you answer parts (i)–(iii) below. $\boxed{\Delta H_i^\circ/kJ \text{ mol}^{-1} - 635 0 0 - 1-110}{s^\circ/J \text{ K}^{-1} \text{ mol}^{-1} 39.7 5.7 41.4 197.6}$ (i) Calculate the standard enthalpy change for the CaO reduction in equation 4.1.(1) Calculate the standard enthalpy change for the CaO reduction in equation 4.1.(1) Calculate the standard entropy change for the CaO reduction in equation 4.1.(1) Calculate the standard entropy change for the CaO reduction in equation 4.1.(1) Calculate the standard entropy change for the CaO reduction in equation 4.1.(1) Calculate the standard entropy change for the CaO reduction in equation 4.1.(1) Calculate the standard entropy change for the CaO reduction in equation 4.1.(1) Calculate the standard entropy change for the CaO reduction in equation 4.1.(1) Calculate the minimum temperature at which the carbon reduction in equation 4.1 is feasible.(2) Examiner's commentary(2) Candidate style answer(2) Examiner's commentary(3) Calculate the minimum temperature at which the carbon reduction in equation 4.1 is feasible.(5) Candidate style answer(2) Examiner's commentary(2) Candidate style answer(2) Examiner's commentary(2) Candidate style answer(2) Examiner's commentary(2) Candidate style answer(2) Examiner's commentary<								
Use the data in the table below to help you answer parts (i)–(iii) below. $\frac{CaO(s)}{\Delta H_{t} \circ / IkJ mol^{-1}} - \frac{635}{0} 0 0 - \frac{-110}{5}$ $\frac{CO(g)}{S^{\circ} / J K^{-1} mol^{-1}} - \frac{635}{39.7} 0 0 - \frac{-110}{5}$ i) Calculate the standard enthalpy change for the CaO reduction in equation 4.1. [1] Candidate style answer $\frac{Examiner's commentary}{\Delta H = producty - reactanty}$ $= -110 - (-635) = 525 kJ mob^{1} \Delta H^{\circ} = 525 kJ mob^{1}$ $\Delta F^{\circ} = 193.6 J K^{1} mob^{1}$ $\Delta S^{\circ} = 0.1936 kJ mob^{1}$ $\Delta S = \frac{525}{193.6} = 2.71 K$ Use the tast is the table below to help you answer parts (i)–(iii) below. $\Delta S = \frac{525}{193.6} = 2.71 K$						•	•	
CaO(s)C(s)Ca(s)CO(g) $\Delta H_i^+/kJ$ mol ⁻¹ -63500-110S°/J K ⁻¹ mol ⁻¹ 39.75.741.4197.6(i)Calculate the standard enthalpy change for the CaO reduction in equation 4.1.[1]Candidate style answerExaminer's commentary $\Delta H = producty - reactanty== -110 - (-635) = 525 kJ moli\Lambda H^{+-} = 525 kJ moli(ii)Calculate the standard entropy change for the CaO reduction in equation 4.1.(1)Candidate style answer\Delta S = producty - reactanty= 41.4 + 197.6 - (39.7 + 5.7) = 193.6 J K^{-1}\Delta S^{+-} = 193.6 J K^{-1} mol^{-1}(iii)Calculate the minimum temperature at which the carbon reduction in equation 4.1 is feasible.(iii)Calculate the minimum temperature is when 0 = \Delta H - T\Delta STo be feasible, \Delta G < 0The minimum temperature is when 0 = \Delta H - T\Delta S\Delta S = \frac{193.6}{1000} = 0.1936 kJ mol^{-1}\therefore \Delta S = \frac{193.6}{1000} = 0.1936 kJ mol^{-1}\therefore T = \frac{\Delta K}{\Delta S} = \frac{525}{193.6} = 2.71 K$		CaO(s	s) + C(s) \rightarrow Ca(s)) + CO(g)	equati	on 4.1		
CaO(s)C(s)Ca(s)CO(g) $\Delta H_i^{-p}/kJ \mod^{-1}$ -63500-110S°/J K ⁻¹ mol ⁻¹ 39.75.741.4197.6(i)Calculate the standard enthalpy change for the CaO reduction in equation 4.1.[1Candidate style answerExaminer's commentary $\Delta H = producty - reactanty== -110 - (-635) = 525 kJ mol1\Lambda H^{+} = 525 kJ mol1\Lambda H^{+} = 525 kJ mol1\Lambda H^{+} = 525 kJ mol1(ii)Calculate the standard entropy change for the CaO reduction in equation 4.1.Candidate style answerExaminer's commentary\Delta S = producty - reactanty = 41.4 + 197.6 - (39.7 + 5.7) = 193.6 J K^{-1} mol1\Delta S^{-} = 193.6 J K^{-1} mol2[5Candidate style answerExaminer's commentary\Delta S = 193.6 J K^{-1} mol2[5Candidate style answerExaminer's commentary\Delta S = 193.6 J K^{-1} mol2[5Candidate style answerExaminer's commentary\Delta G = \Delta H - T\Delta SUnfortunately, the candidate has not ensured that entropy and enthalpy are in the same units Entropy values or typically shown in J mol-1 and enthalpy values in \lambda I mol-1. Before the last stage, \Delta S should have been divided by 1000 to give a value of 0.1936 kJ mol1 (or \Delta H multiplied by 1000 to J mol-1)\therefore T = \frac{AH}{\Delta S} = \frac{525}{193.6} = 2.71 KThe correct answer should have been 1000 times larger: 2712 K.$		Use th	ne data in the table	below to hel	lp vou an	swer parts (i)-	(iii) below.	
$\Delta H_i^+/kJ \text{ mol}^{-1}$ -63500-110 $S^\circ IJ K^{-1} \text{ mol}^{-1}$ 39.75.741.4197.6(i) Calculate the standard enthalpy change for the CaO reduction in equation 4.1.[1]Candidate style answerExaminer's commentary $\Delta H = producty - reactantyExaminer's commentary\Delta H^{**} = 525 kJ mob^1\Delta H^{**} = 525 kJ mob^1\Delta H^{**} = 525 kJ mob^1\Delta H^{**} = 525 kJ mob^1(ii) Calculate the standard entropy change for the CaO reduction in equation 4.1.Candidate style answerExaminer's commentary\Delta S = producty - reactantyExaminer's commentary\Delta S = producty - reactanty[1]= 41.4 + 197.6 - (39.7 + 5.7) = 193.6 J K^{-1}[5](iii) Calculate the minimum temperature at which the carbon reduction in equation 4.1 is feasible.[5]Candidate style answerExaminer's commentary\Delta G = \Delta H - T\Delta SUnfortunately, the candidate has not ensured that entropy and enthalpy values in kJ mol-1 and enthalpy values in kJ mol-1 and enthalpy values in kJ mol-1 (or \Delta H multiplied by 1000 to J mol-1)\therefore \Delta S = \frac{193.6}{1000} = 0.1936 kJ mol^2Unfortunately, the candidate has not ensured that stage, \Delta S should have been divided by 1000 to J mol-1)\therefore T = \frac{AH}{\Delta S} = \frac{525}{193.6} = 2.71 \text{ K}The correct answer should have been 1000 times larger: 2712 K.$								
(i) Calculate the standard enthalpy change for the CaO reduction in equation 4.1. [1] Candidate style answer $ \begin{aligned} Examiner's commentary \\ \Delta H = producty - reactanty \\ = -110 - (-635) = 525 kJ mol2 \Delta H'' = 525 kJ mol2 \\ \Delta H'' = 525 kJ mol2 \end{aligned} $ (ii) Calculate the standard entropy change for the CaO reduction in equation 4.1. [1] Candidate style answer $ \begin{aligned} Examiner's commentary \\ \Delta S = producty - reactanty \\ = 41.4 + 197.6 - (39.7 + 5.7) = 193.6 J K^{-2} \\ mol2 \\ \Delta S'' = 193.6 J K^{-2} mol2 \end{aligned} $ (iii) Calculate the minimum temperature at which the carbon reduction in equation 4.1 is feasible. [5] Candidate style answer $ \begin{aligned} Kag = AH - TAS \\ To be feasible, \Delta G < 0 \\ The minimum temperature is when 0 = \\ AH - TAS \\ \therefore \Delta S = \frac{193.6}{1000} = 0.1936 kJ mol2 \end{aligned} $ (i) The correct answer should have been divided by 1000 to give a value of 0.1936 kJ mol ² $ \therefore T = \frac{AH}{AS} = \frac{525}{193.6} = 2.71 K \end{aligned} $			∆ <i>H</i> _f ⁻ /kJ mol ⁻¹			0		_
Image: The standard entropy change for the CaO reduction in equation 4.1.(ii) Calculate the standard entropy change for the CaO reduction in equation 4.1.(iii) Calculate the standard entropy change for the CaO reduction in equation 4.1.(iii) Calculate the standard entropy change for the CaO reduction in equation 4.1.(iii) Calculate the standard entropy change for the CaO reduction in equation 4.1.(iii) Calculate the standard entropy change for the CaO reduction in equation 4.1.(iii) Calculate the standard entropy change for the CaO reduction in equation 4.1.(iii) Calculate the minimum temperature at which the carbon reduction in equation 4.1 is feasible.(iii) Calculate the minimum temperature at which the carbon reduction in equation 4.1 is feasible.(iii) Calculate the minimum temperature at which the carbon reduction in equation 4.1 is feasible.(iii) Calculate the minimum temperature is when 0 = $\Delta H - T\Delta S$ $\Delta G = \Delta H - T\Delta S$ $To be feasible, \Delta G < 0$ The minimum temperature is when 0 = $\Delta H - T\Delta S$ $\Delta S = \frac{193.6}{1000} = 0.1936 kJ mol^3$ $\therefore \Delta S = \frac{193.6}{1000} = 0.1936 kJ mol^3$ $\therefore T = \frac{\Delta H}{\Delta S} = \frac{525}{193.6} = 2.71 \text{ K}$			S [⊷] /J K ⁻¹ mol ⁻¹	39.7	5.7	41.4	197.6	_
Image:								
Candidate style answerExaminer's commentary $\Delta H = \text{producty} - \text{reactanty}$ = -110 - (-635) = 525 kJ mobilic $\Delta H^{*} = 525$ kJ mobilic $\Delta H^{*} = 525$ kJ mobilic[1](ii)Calculate the standard entropy change for the CaO reduction in equation 4.1.[1](iii)Calculate the standard entropy change for the CaO reduction in equation 4.1.[1]Candidate style answerExaminer's commentary $\Delta S = \text{producty} - \text{reactanty}$ = 41.4 + 197.6 - (39.7 + 5.7) = 193.6 J K^{-1} molilExaminer's commentary(iii)Calculate the minimum temperature at which the carbon reduction in equation 4.1 is feasible.[5]Candidate style answer[5] $\Delta G = \Delta H - T\Delta S$ To be feasible, $\Delta G < 0$ The minimum temperature is when $0 =$ $\Delta H - T\Delta S$ Unfortunately, the candidate has not ensured that entropy and enthalpy are in the same units Entropy values in kJ mol ⁻¹ and enthalpy values in kJ mol ⁻¹ (or ΔH multiplied by 1000 to J mol ⁻¹) $\therefore \Delta S = \frac{193.6}{1000} = 0.1936$ kJ mol ² Undot in conserve should have been 1000 times larger: 2712 K.	(i)	Calcu	late the standard e	enthalpy char	nge for th	e CaO reducti	on in equatior	
$\Delta H = \text{products} - \text{reactanty} \\ = -110 - (-635) = 525 \text{ kJ mol}^{1} \\ \Delta H^{\circ} = 525 \text{ kJ mol}^{1} \\ \Delta H^{\circ} = 525 \text{ kJ mol}^{1} \\ \text{(ii)} \text{Calculate the standard entropy change for the CaO reduction in equation 4.1.} \\ \hline \text{(iii)} \text{Calculate the standard entropy change for the CaO reduction in equation 4.1.} \\ \hline \text{Candidate style answer} \qquad \qquad$	0	-1:-1	4. J					[1
= -110 - (-635) = 525 kJ mol ¹² $\Delta H^* = 525$ kJ mol[1](ii) Calculate the standard entropy change for the CaO reduction in equation 4.1.[1](iii) Calculate the standard entropy change for the CaO reduction in equation 4.1.[1]Candidate style answerExaminer's commentary $\Delta S = producty - reactanty== 41.4 + 197.6 - (39.7 + 5.7) = 193.6 J K-1mol12Examiner's commentary\Delta S^* = 193.6 J K^{-1} mol13[5](iii) Calculate the minimum temperature at which the carbon reduction in equation 4.1 isfeasible.[5]Candidate style answer[5]\Delta G = \Delta H - T\Delta STo be feasible, \Delta G < 0The minimum temperature is when 0 =\Delta H - T\Delta SUnfortunately, the candidate has not ensuredthat entropy and enthalpy are in the same unitsEntropy values in kJ mol-1. Before the laststage, \Delta S should have been divided by 1000 togive a value of 0.1936 kJ mol-1 (or \Delta H multipliedby 1000 to J mol-1)The correct answer should have been 1000times larger: 2712 K.$,		Exa	niner's comme	ntary	
$\Delta H^{\circ} = 525 \ kJ \ mol$ (ii) Calculate the standard entropy change for the CaO reduction in equation 4.1.(iii) Calculate the standard entropy change for the CaO reduction in equation 4.1.(iii) Calculate style answerExaminer's commentary $\Delta S = product_Y - reactant_Y = 41.4 + 197.6 - (39.7 + 5.7) = 193.6 J K^{-1}$ Examiner's commentary $\Delta S^{\circ} = 193.6 J K^{-1} \ mol^{-1}$ (iii) Calculate the minimum temperature at which the carbon reduction in equation 4.1 is feasible.(iii) Calculate the minimum temperature at which the carbon reduction in equation 4.1 is feasible.[5Candidate style answerExaminer's commentary $\Delta G = \Delta H - T\Delta S$ Unfortunately, the candidate has not ensured that entropy and enthalpy are in the same units Entropy values or typically shown in J mol ⁻¹ and enthalpy values in kJ mol ⁻¹ . Before the last stage, ΔS should have been divided by 1000 to give a value of 0.1936 kJ mol ⁻¹ (or ΔH multiplied by 1000 to J mol ⁻¹) $\therefore T = \frac{\Delta H}{\Delta S} = \frac{525}{193.6} = 2.71 \ K$ The correct answer should have been 1000 times larger: 2712 K.				7 1				
(ii) Calculate the standard entropy change for the CaO reduction in equation 4.1. [1] Candidate style answer $\Delta S = \text{product}_{S} - \text{reactant}_{S} = 41.4 + 197.6 - (39.7 + 5.7) = 193.6 J K^{-1}$ $\Delta S^* = 193.6 J K^{-1} \text{ mol}^{1}$ (iii) Calculate the minimum temperature at which the carbon reduction in equation 4.1 is feasible. [5] Candidate style answer $\Delta G = \Delta H - T\Delta S$ $\Delta S = \frac{193.6}{1000} = 0.1936 \text{ kJ mol}^{1}$ $\therefore T = \frac{\Delta H}{\Delta S} = \frac{525}{193.6} = 2.71 \text{ K}$ Examiner's commentary [1] Database for the CaO reduction in equation 4.1. [2] Database for the CaO reduction in equation 4.1. [3] Database for the CaO reduction in equation 4.1. [4] Database for the carbon reduction in equation 4.1 is feasible. [5] Database for the carbon reduction in equation 4.1 is feasible. [5] Database for the carbon reduction in equation 4.1 is feasible. [5] Database for the carbon reduction in equation 4.1 is feasible. [5] Database for the carbon reduction in equation 4.1 is feasible. [5] Database for the carbon reduction in equation 4.1 is feasible. [5] Database for the carbon reduction in equation 4.1 is feasible. [5] Database for the carbon reduction in equation 4.1 is feasible. [5] Database for the carbon reduction in equation 4.1 is feasible. [5] Database for the carbon reduction in equation 4.1 is feasible. [5] Database for the carbon reduction in equation 4.1 is feasible. [5] Database for the carbon reduction in equation 4.1 is feasible. [5] Database for the carbon reduction in equation 4.1 is feasible. [5] Database for the carbon reduction in equation 4.1 is feasible. [5] Database for the carbon reduction in equation 4.1 is feasible. [5] Database for the carbon reduction in equation 4.1 is feasible. [5] Database for the carbon reduction in equation 4.1 is feasible. [6] Database for the carbon reduction in equation 4.1 is feasible. [6] Database for the carbon reduction in equation 4.1 is feasible. [6] Database for the carbon reduction in equation 4.1 is feasible. [6] Database for the carbon reduction in equation 4	= -1	.10 - (-	, 0		7			
Image:			$\Delta \mathcal{H}^{\epsilon}$	r = 525 kJ w	iot			
Image:						• • • •	•	
Candidate style answerExaminer's commentary $\Delta S = product_{3} - reactant_{3}$ = 41.4 + 197.6 - (39.7 + 5.7) = 193.6 J K ⁻¹ moV ¹ Examiner's commentary $\Delta S^{*} = 193.6 J K^{-1} moV^{1}$ (iii)Calculate the minimum temperature at which the carbon reduction in equation 4.1 is feasible.(iii)Calculate the minimum temperature at which the carbon reduction in equation 4.1 is feasible.(iii)Calculate the minimum temperature at which the carbon reduction in equation 4.1 is feasible.(iii)Calculate the minimum temperature at which the carbon reduction in equation 4.1 is feasible.(iii)Calculate the minimum temperature at which the carbon reduction in equation 4.1 is feasible.(iii)Calculate the minimum temperature at which the carbon reduction in equation 4.1 is feasible.(iii)Calculate the minimum temperature at which the carbon reduction in equation 4.1 is feasible.(iii)Calculate the minimum temperature at which the carbon reduction in equation 4.1 is feasible. $\Delta G = \Delta H - T\Delta S$ Unfortunately, the candidate has not ensured that entropy and enthalpy are in the same units Entropy values or typically shown in J mol ⁻¹ and enthalpy values in kJ mol ⁻¹ . Before the last stage, ΔS should have been divided by 1000 to give a value of 0.1936 kJ mol ⁻¹ (or ΔH multiplied by 1000 to J mol ⁻¹) $\therefore T = \frac{\Delta H}{\Delta S} = \frac{525}{193.6} = 2.71 \text{ K}$ The correct answer should have been 1000 times larger: 2712 K.	(ii)	Calcu	late the standard e	entropy chang	ge for the	CaO reductio	n in equation	
$\Delta S = \text{products} - \text{reactants}$ $= 41.4 + 197.6 - (39.7 + 5.7) = 193.6 \text{ J K}^{-1}$ mol ¹ $\Delta S^{*} = 193.6 \text{ J K}^{-1} \text{ mol}^{1}$ (iii) Calculate the minimum temperature at which the carbon reduction in equation 4.1 is feasible. (iii) Calculate the minimum temperature at which the carbon reduction in equation 4.1 is feasible. (iii) Calculate the minimum temperature at which the carbon reduction in equation 4.1 is feasible. (5) Candidate style answer $\Delta G = \Delta H - T\Delta S$ To be feasible, $\Delta G < 0$ The minimum temperature is when $0 = \Delta H - T\Delta S$ $\therefore \Delta S = \frac{193.6}{1000} = 0.1936 \text{ kJ mol}^{1}$ $\therefore T = \frac{\Delta H}{\Delta S} = \frac{525}{193.6} = 2.71 \text{ K}$ Unfortunately, the candidate has not ensured that entropy values or typically shown in J mol ⁻¹ and enthalpy values in kJ mol ⁻¹ . Before the last stage, ΔS should have been divided by 1000 to give a value of 0.1936 kJ mol ⁻¹ (or ΔH multiplied by 1000 to J mol ⁻¹). The correct answer should have been 1000 times larger: 2712 K.								[1
$= 41.4 + 197.6 - (39.7 + 5.7) = 193.6 J K^{-1}$ mol ¹ ΔS [*] = 193.6 J K ⁻¹ mol ¹ (iii) Calculate the minimum temperature at which the carbon reduction in equation 4.1 is feasible. (iii) Calculate the minimum temperature at which the carbon reduction in equation 4.1 is feasible. (iii) Calculate the minimum temperature at which the carbon reduction in equation 4.1 is feasible. (5) Candidate style answer ΔG = ΔH - TΔS To be feasible, ΔG < 0 The minimum temperature is when 0 = ΔH - TΔS ∴ ΔS = $\frac{193.6}{1000}$ = 0.1936 kJ mol ¹ ∴ $T = \frac{\Delta H}{\Delta S} = \frac{525}{193.6}$ = 2.71 K	Can	didata a	tulo answor		Eva	minor's commo	nton	
molit $\Delta S^* = 193.6 J K^{-1} molit$ (iii) Calculate the minimum temperature at which the carbon reduction in equation 4.1 is feasible.(iii) Calculate the minimum temperature at which the carbon reduction in equation 4.1 is feasible.Candidate style answer $\Delta G = \Delta H - T\Delta S$ $\Delta G = \Delta H - T\Delta S$ To be feasible, $\Delta G < 0$ The minimum temperature is when $0 =$ $\Delta H - T\Delta S$ $\therefore \Delta S = \frac{193.6}{1000} = 0.1936 kJ molit$ $\therefore \Delta S = \frac{193.6}{1000} = 0.1936 kJ molit$ $\therefore T = \frac{\Delta H}{\Delta S} = \frac{525}{193.6} = 2.71 K$ Examiner's commentaryUnfortunately, the candidate has not ensured that entropy and enthalpy are in the same units Entropy values or typically shown in J mol ⁻¹ and enthalpy values in kJ mol ⁻¹ . Before the last stage, ΔS should have been divided by 1000 to give a value of 0.1936 kJ mol ⁻¹ (or ΔH multiplied by 1000 to J mol ⁻¹)The correct answer should have been 1000 times larger: 2712 K.			-		Exa	niner's comme	ntary	
(iii) Calculate the minimum temperature at which the carbon reduction in equation 4.1 is feasible. (iii) Calculate the minimum temperature at which the carbon reduction in equation 4.1 is feasible. (iii) Calculate the minimum temperature at which the carbon reduction in equation 4.1 is feasible. (5) Candidate style answer $\Delta G = \Delta H - T\Delta S$ $To be feasible, \Delta G < 0$ The minimum temperature is when $0 = \Delta H - T\Delta S$ $\therefore \Delta S = \frac{193.6}{1000} = 0.1936 \text{ kJ mol}^1$ $\therefore T = \frac{\Delta H}{\Delta S} = \frac{525}{193.6} = 2.71 \text{ K}$ Unfortunately, the candidate has not ensured that entropy and enthalpy are in the same units. Entropy values or typically shown in J mol ⁻¹ and enthalpy values in kJ mol ⁻¹ . Before the last stage, ΔS should have been divided by 1000 to give a value of 0.1936 kJ mol ⁻¹ (or Δ H multiplied by 1000 to J mol ⁻¹). The correct answer should have been 1000 times larger: 2712 K.	ΔS =	= prodi	icts - reactants) - 1936 TK		niner's comme	ntary	
feasible.[5]Candidate style answerExaminer's commentary $\Delta G = \Delta H - T\Delta S$ Unfortunately, the candidate has not ensured that entropy and enthalpy are in the same units. Entropy values or typically shown in J mol ⁻¹ and enthalpy values in kJ mol ⁻¹ . Before the last stage, ΔS should have been divided by 1000 to give a value of 0.1936 kJ mol ⁻¹ $\Delta S = \frac{193.6}{1000} = 0.1936 kJ mol-1$ $\therefore T = \frac{\Delta H}{\Delta S} = \frac{525}{193.6} = 2.71 \text{ K}$	ΔS = = 43	= produ 1.4 + 19	icts - reactants) = 193.6 J K		niner's comme	ntary	
feasible.[5]Candidate style answerExaminer's commentary $\Delta G = \Delta H - T\Delta S$ Unfortunately, the candidate has not ensured that entropy and enthalpy are in the same units. Entropy values or typically shown in J mol ⁻¹ and enthalpy values in kJ mol ⁻¹ . Before the last stage, ΔS should have been divided by 1000 to give a value of 0.1936 kJ mol ⁻¹ $\Delta S = \frac{193.6}{1000} = 0.1936$ kJ mol ⁻¹ $\therefore T = \frac{\Delta H}{\Delta S} = \frac{525}{193.6} = 2.71$ KUnfortunately, the candidate has not ensured that entropy and enthalpy are in the same units. Entropy values or typically shown in J mol ⁻¹ and enthalpy values in kJ mol ⁻¹ . Before the last stage, ΔS should have been divided by 1000 to give a value of 0.1936 kJ mol ⁻¹ (or ΔH multiplied by 1000 to J mol ⁻¹) The correct answer should have been 1000 times larger: 2712 K.	ΔS = = 4: mot	= produ 1.4 + 19 V ¹	ucts - reactants 97.6 - (39.7 + 5.7) = 193.6 J K		niner's comme	ntary	
Candidate style answerExaminer's commentary $\Delta G = \Delta H - T\Delta S$ Unfortunately, the candidate has not ensured that entropy and enthalpy are in the same units Entropy values or typically shown in J mol ⁻¹ and enthalpy values in kJ mol ⁻¹ . Before the last stage, ΔS should have been divided by 1000 to give a value of 0.1936 kJ mol ⁻¹ $\therefore T = \frac{\Delta H}{\Delta S} = \frac{525}{193.6} = 2.71 \text{ K}$ The correct answer should have been 1000 times larger: 2712 K.	ΔS = = 4: mot	= produ 1.4 + 19 V ¹	ucts - reactants 97.6 - (39.7 + 5.7) = 193.6 J K		niner's comme	ntary	
Candidate style answerExaminer's commentary $\Delta G = \Delta H - T\Delta S$ Unfortunately, the candidate has not ensured that entropy and enthalpy are in the same units. Entropy values or typically shown in J mol ⁻¹ and enthalpy values in kJ mol ⁻¹ . Before the last stage, ΔS should have been divided by 1000 to give a value of 0.1936 kJ mol ⁻¹ (or ΔH multiplied by 1000 to J mol ⁻¹) $\therefore T = \frac{\Delta H}{\Delta S} = \frac{525}{193.6} = 2.71 \text{ K}$ The correct answer should have been 1000 times larger: 2712 K.	ΔS = = 4: mot Δ <i>S</i> °	= produ 1.4 + 19 1 ⁷ = 193.	ucts - reactants 97.6 - (39.7 + 5.7 6J К ⁻¹ mol ⁻¹		<u><u></u> <u></u> </u>			ation 4.1 is
$\Delta G = \Delta H - T\Delta S$ $To be feasible, \Delta G < 0$ $The minimum temperature is when 0 = \Delta H - T\Delta S$ $\therefore \Delta S = \frac{193.6}{1000} = 0.1936 \text{ kJ mol}^{1}$ $\therefore T = \frac{\Delta H}{\Delta S} = \frac{525}{193.6} = 2.71 \text{ K}$ Unfortunately, the candidate has not ensured that entropy and enthalpy are in the same units. Entropy values or typically shown in J mol ⁻¹ and enthalpy values in kJ mol ⁻¹ . Before the last stage, ΔS should have been divided by 1000 to give a value of 0.1936 kJ mol ⁻¹ (or ΔH multiplied by 1000 to J mol ⁻¹). The correct answer should have been 1000 times larger: 2712 K.	ΔS = = 4: mot ΔS ^o	= produ 1.4 + 19 1 ⁷¹ = 193. Calcu	ucts - reactants 97.6 - (39.7 + 5.7 6ЈК ⁻¹ то ^{ј 1} late the minimum		<u><u></u> <u></u> </u>			ation 4.1 is
To be feasible, $\Delta G < 0$ The minimum temperature is when $0 = \Delta H - T\Delta S$ $\therefore \Delta S = \frac{193.6}{1000} = 0.1936 \text{ kJ mol}^1$ $\therefore T = \frac{\Delta H}{\Delta S} = \frac{525}{193.6} = 2.71 \text{ K}$ that entropy and enthalpy are in the same units. Entropy values or typically shown in J mol ⁻¹ and enthalpy values in kJ mol ⁻¹ . Before the last stage, ΔS should have been divided by 1000 to give a value of 0.1936 kJ mol ⁻¹ (or ΔH multiplied by 1000 to J mol ⁻¹) The correct answer should have been 1000 times larger: 2712 K.	ΔS = = 4: moi ΔS [°] (iii)	= produ 1.4 + 19 1 ⁷¹ = 193. Calcu feasib	Late the minimum ple.		at which t	he carbon rec	luction in equ	ation 4.1 is [5
The minimum temperature is when $0 = \Delta H - T\Delta S$ $\therefore \Delta S = \frac{193.6}{1000} = 0.1936 \text{ kJ mol}^{-1}$ $\therefore T = \frac{\Delta H}{\Delta S} = \frac{525}{193.6} = 2.71 \text{ K}$ Entropy values or typically shown in J mol^{-1} and enthalpy values in kJ mol^{-1}. Before the last stage, ΔS should have been divided by 1000 to give a value of 0.1936 kJ mol^{-1} (or ΔH multiplied by 1000 to J mol^{-1}) The correct answer should have been 1000 times larger: 2712 K.	$\Delta S = 42$ mot ΔS° (iii)	= produ 1.4 + 19 1 ⁷¹ = 193. Calcu feasib	Late the minimum ple.		at which t	he carbon rec	luction in equ	
$\Delta \mathcal{H} - T\Delta S$ $\Delta \mathcal{S} = \frac{193.6}{1000} = 0.1936 \text{ kJ mol}^{-1}$ $\Delta \mathcal{S} = \frac{193.6}{1000} = 0.1936 \text{ kJ mol}^{-1}$ $T = \frac{\Delta \mathcal{H}}{\Delta S} = \frac{525}{193.6} = 2.71 \text{ K}$ enthalpy values in kJ mol^{-1}. Before the last stage, ΔS should have been divided by 1000 to give a value of 0.1936 kJ mol^{-1} (or ΔH multiplied by 1000 to J mol^{-1}). The correct answer should have been 1000 times larger: 2712 K.	$\Delta S = 43$ mot ΔS° (iii) Can $\Delta G = 6$	= produ 1.4 + 19 1 ⁻¹ = 193. Calcu feasib didate s = ΔH - 7	Lacts - reactants 0.7.6 - (39.7 + 5.7) $0.6 J K^{-1} mob^{-1}$ Late the minimum fole. Extyle answer $T\Delta S$		at which the second sec	he carbon rec miner's comme	luction in equ ntary andidate has r	[5 not ensured
$\Delta \mathcal{H} = T\Delta S$ $\therefore \Delta S = \frac{193.6}{1000} = 0.1936 \text{ kJ mol}^{1}$ $\therefore T = \frac{\Delta H}{\Delta S} = \frac{525}{193.6} = 2.71 \text{ K}$ stage, ΔS should have been divided by 1000 to give a value of 0.1936 kJ mol ⁻¹ (or ΔH multiplied by 1000 to J mol ⁻¹) The correct answer should have been 1000 times larger: 2712 K.	$\Delta S = 4$ moi ΔS° (iii) (iii) Can $\Delta G = To 1$	= $produ$ 1.4 + 19 f^1 = 193. Calcu feasib didate s = ΔH - 7 be feasi	Late the minimum formula form	temperature a	at which the second sec	he carbon rec miner's comme ortunately, the c entropy and en	luction in equants Intary andidate has r	[5 not ensured ne same units.
$\therefore T = \frac{\Delta H}{\Delta S} = \frac{525}{193.6} = 2.71 \text{ K}$ by 1000 to J mol ⁻¹) The correct answer should have been 1000 times larger: 2712 K.	$\Delta S = 4:$ moi ΔS° (iii) (iii) Can $\Delta G = 70$ To 1 The	= $produ$ 1.4 + 19 f^{1} = 193. Calcu feasib didate s = ΔH - 7 be feasi minim	Late the minimum formula form	temperature a	at which that Entr	the carbon rec miner's comme ortunately, the c entropy and en opy values or t	luction in equants Intary candidate has r thalpy are in th pically shown	[5 not ensured ne same units in J mol ⁻¹ and
$\therefore T = \frac{\Lambda T}{\Delta S} = \frac{325}{193.6} = 2.71 \text{ K}$ times larger: 2712 K.	$\Delta S = 4:$ moi ΔS° (iii) (iii) Can $\Delta G = 70$ To l	= $produ$ 1.4 + 19 f^{1} = 193. Calcu feasib didate s = ΔH - 7 be feasi minim	Late the minimum formula form	temperature a	at which the stag	the carbon rec miner's comme ortunately, the c entropy and en opy values or t alpy values in f e, Δ S should ha	luction in equants in the second state is the second state in the second state is the	[5 not ensured ne same units. in J mol ⁻¹ and e the last ed by 1000 to
mínímum temperature = 2.71 K	$\Delta S = 4:$ moi ΔS° (iii) (iii) Can $\Delta G = 1$ $To 1$ The ΔH	= $produ$ 1.4 + 19 f^1 = 193. Calcu feasib didate s = ΔH - 7 be feasi > minim - $T\Delta S$	Late the minimum $f_{\Delta S}$ $f_{\Delta S}$ $f_$	temperature a	at which the stag give	the carbon rec miner's comme ortunately, the c entropy and en opy values or t alpy values in l e, Δ S should ha a value of 0.19	luction in equants in the second state is the second state in the second state is the	[5 not ensured ne same units. in J mol ⁻¹ and e the last ed by 1000 to
	$\Delta S = 4:$ moi ΔS° (iii) Can $\Delta G = 5$ $To 1$ The ΔH $\therefore \Delta$	= produ 1.4 + 19 f^{1} = 193. Calcu feasib didate s = $\Delta H - 7$ be feasi > minim - $T\Delta S$ $S = \frac{193}{100}$	Late the minimum ΔS ΔS ΔS ΔS ΔG ΔG	temperature a v is when $0 =$	at which the stag give by 1 The	the carbon rec miner's comme ortunately, the c entropy and en opy values or t alpy values or t alpy values in l e, Δ S should ha a value of 0.19 000 to J mol ⁻¹) correct answer	luction in equants in the second stars and idate has represented by a second stars of the second stars are been divided by the should have been been been been been divided by the should have been been been been been been been be	[5 not ensured he same units. in J mol ⁻¹ and e the last ed by 1000 to r Δ H multiplied
	$\Delta S =$ $= 4:$ moi ΔS° (iii) (iii) Can $\Delta G =$ $To -i$ $The \Delta H$ $\therefore \Delta$	$= produ$ $1.4 + 19$ $J^{1} = 193.$ Calcu feasib didate s $= \Delta H - 7$ be feasi minim $- T\Delta S$ $S = \frac{193}{100}$ $f = \frac{\Delta H}{\Delta S}$	$\frac{1}{4} = \frac{525}{193.6} = 2.71 \text{ K}^{-1}$	temperature a v is when $0 =o t^1$	at which the stag give by 1 The time	the carbon rec miner's comme ortunately, the c entropy and en opy values or t alpy values or t alpy values in l e, Δ S should ha a value of 0.19 000 to J mol ⁻¹) correct answer	luction in equants in the second stars and idate has represented by a second stars of the second stars are been divided by the should have been been been been been divided by the should have been been been been been been been be	[5 not ensured ne same units. in J mol ⁻¹ and e the last ed by 1000 to r ∆H multiplied

5 Use the standard electrode potentials in the table below to answer the questions that follow.

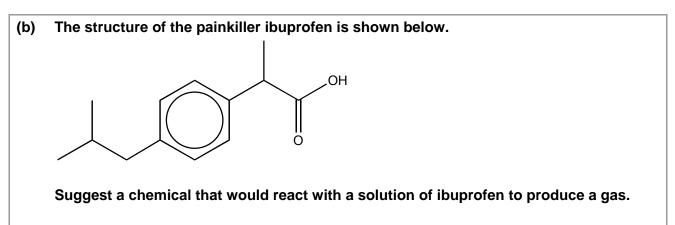
I	Fe ²⁺ (aq) + 2e ⁻ ⇒ Fe(s)	<i>E</i> [•] = -0.44 V
II	$V^{3+}(aq) + e^{-} \rightleftharpoons V^{2+}(aq)$	<i>E</i> ^{-⊕} = −0.26 V
ш	2H⁺(aq) + 2e⁻ 辛 H₂(g)	<i>E</i> ^{-⊕} = 0.00 ∨
IV	$O_2(g) + 4H^+(aq) + 4e^- \Rightarrow 2H_2O(I)$	<i>E</i> [⊕] = +0.40 V

- (a) An electrochemical cell was set up based on systems I and II.
- (i) Write half-equations to show what has been oxidised and what has been reduced in this cell.

[2]

Candidate style answer	Examiner's commentary
oxidation:	
$Fe \rightarrow Fe^{2+} + 2e^{-}$	
reduction:	
$\mathcal{V}^{\scriptscriptstyle 3+}$ + $e^{}$ \rightarrow $\mathcal{V}^{\scriptscriptstyle 2+}$	
(ii) Determine the cell potential of the	is cell.
	[1]
Candidate style answer	Examiner's commentary
Ecell is the difference so Ecell	
= 0.26 - (-0.44) = 0.18 V	

(b) An electrochemical fuel cell was set up based on systems III and IV.


(i) Construct an equation for the spontaneous cell reaction. Show your working.

[2]

Candidate style answer	Examiner's commentary
Hydrogen is less positive so this goes left	
and is reversed.	
The hydrogen one is doubled to get 4e	
$\mathcal{H}_{2}(g) \longrightarrow 4\mathcal{H}^{*}(aq) + 4e^{iq}$	
$\mathcal{O}_{2}(g) + 4\mathcal{H}^{+}(aq) + 4e^{-} \rightleftharpoons 2\mathcal{H}_{2}\mathcal{O}(l)$	
Add to get overall: $2\mathcal{H}_2 + \mathcal{O}_2 \rightarrow 2\mathcal{H}_2\mathcal{O}$	
(ii) Fuels cells based on systems such as III	and IV are increasingly being used to
generate energy.	
generate energy. Discuss two advantages and two disadv	antages of using fuels cells for energy rather
generate energy.	
generate energy. Discuss two advantages and two disadv	antages of using fuels cells for energy rather [4] Examiner's commentary
generate energy. Discuss two advantages and two disadv than using fossil fuels.	[4]
generate energy. Discuss two advantages and two disadv than using fossil fuels. <i>Candidate style answer</i> <i>Advantages:</i>	[4] Examiner's commentary
generate energy. Discuss two advantages and two disadv than using fossil fuels. Candidate style answer Advantages: With a fuel cell, only water is formed so	[4] Examiner's commentary
generate energy. Discuss two advantages and two disadv than using fossil fuels. <i>Candidate style answer</i> <i>Advantages:</i>	[4] Examiner's commentary
generate energy. Discuss two advantages and two disadv than using fossil fuels. Candidate style answer Advantages: With a fuel cell, only water is formed so there are no polluting gases. Fuel cell are more efficient that burning fossil fuels	[4] Examiner's commentary
generate energy. Discuss two advantages and two disadv than using fossil fuels. Candidate style answer Advantages: With a fuel cell, only water is formed so there are no polluting gases. Fuel cell are more efficient that burning fossil fuels Disadvantages:	[4] Examiner's commentary
generate energy. Discuss two advantages and two disadv than using fossil fuels. Candidate style answer Advantages: With a fuel cell, only water is formed so there are no polluting gases. Fuel cell are more efficient that burning fossil fuels	[4] Examiner's commentary

[Total: 9]

6 This question looks at different chemical	This question looks at different chemical compounds used in medicine.	
	This oxide contains 63.64% N by mass, and has a density of 1.833 g dm ⁻³ at room	
Determine the molecular formula of this	gas. Show your working. [3]	
Candidate style answer	Examiner's commentary	
Ratio N : $O = \frac{63.64}{14}$: $\frac{36.36}{16} = 4.56$: 2.27 = 2 : 1. So the empirical formula = N_2O		
1 dm ³ of the gas has a mass of 1.833 g So 24 dm ³ of the gas has a mass of 1.833 x 24 = 44 N_2O weighs 44 so molecular formula is N_2O		

Name the gas produced and write an equation for the reaction.

	_
-2	Л
-	

	L-1
Candidate style answer	Examiner's commentary
chemical Magnesium gas Hydrogen equation $C12H17COOH + Mg \longrightarrow C12H17COOMg$ + $\frac{1}{2}H2$	The candidate seems to have forgotten a basic fact: Group 2 elements, such as magnesium, forms ions with a 2+ charge. The correct formula of the salt would be $(C_{12}H_{17}COO)_2Mg$. The correct equation would then be: $2C_{12}H_{17}COOH + Mg \longrightarrow (C_{12}H_{17}COO)_2Mg + H_2$

(c) Lidocaine, $C_{13}H_{20}N_2O_2$, is used as a local anaesthetic in dentistry. Lidocaine is injected by syringe as a solution containing 100 mg in 5.00 cm³.

Calculate the concentration, in mol dm^{-3} , of lidocaine in the syringe.

[3]

Candidate style answer	Examiner's commentary
For lidocaine, $M_r = 236$ moles lidocaine = $\frac{100 \times 10^{53}}{236} = 4.24 \times 10^{4}$ 4.24×10^{-4} in 5 cm ³ , so $4.24 \times 10^{-4} \times 200$ moles in 1000 cm ³ . So concentration of lidocaine = 0.08 mol dm ³ \checkmark concentration = 0.8 mol dm ³	Another strange lapse for such a strong candidate. The final answer should have been given to 3 significant figures as all values in the question are to this precision. The answer of 0.8 against the actual calculated value of 0.848 introduces a 6% rounding error. This is a basic error and loss of marks such as this could prove costly for a candidate aiming for a high grade.

(d) Eugenol is used as a painkiller in dentistry. It is an organic compound of C, H and O.

A sample of 1.394 g of eugenol was analysed by burning in oxygen to form 3.74 g of CO₂ and 0.918 g of H₂O. Using a mass spectrometer, the molecular ion peak of eugenol was shown to have a *m*/*z* value of 164.

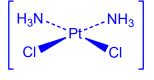
Analyse and interpret this information to determine the molecular formula of eugenol. Show your working clearly. [5]

Candidate style answer	Examiner's commentary
$moles eugenol = \frac{1.394}{164} = 0.0085$	
$moles CO_2 = \frac{3.74}{44} = 0.085$	
moles $C = \text{moles } CO_2 = 0.085$	
mole ratio eugenol : C = 0.0085 : 0.085 = 1 : 10.	
So there must be 10 C atoms in eugenol	
moles $\mathcal{H}_{2}\mathcal{O} = \frac{0.918}{18} = 0.051$	
moles $\mathcal{H} = moles \mathcal{H}_2 \mathcal{O} \times 2 = 0.102$	
mole ratio C : H = 0.085 : 0.102 = 1 : 1.2 = 10 : 12.	
So there must be 12 H atoms in eugenol	
So in eugenol, $C_{10}H_{12}$ is 132, so 0 is 164 - 132 = 32.	
So there must be 2 Os.	
Molecular formula of eugenol = $C_{10}H_{12}O_2$	

[Total: 13]

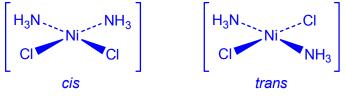

7	This question looks at the chemistry of transition elements.	
(a)(i	a)(i) Explain what is meant by the terms <i>transition element</i> , complex ion and ligand.	
(ii)	 Discuss, with examples, equations and observations, the typical reactions of transition element ions. 	
	In your answer you should make clear how any observations provide evidence for the type of reaction discussed. [11]	
Can	Candidate style answer Examiner's commentary	

(b) Describe, using suitable examples and diagrams, the different shapes and stereoisomerism shown by complex ions.

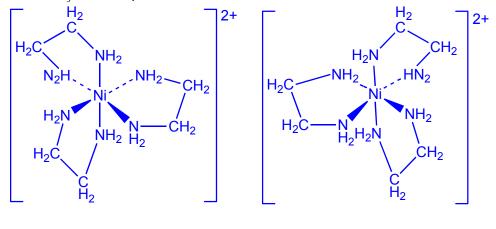

In your answer you should make clear how your diagrams illustrate the type of stereoisomerism involved.

[9]

Candidate style answer	Examiner's commentary
A transition element has an ion with a partly filled d-orbital	
A complex ion is a central metal ion surrounded by ligands	
A lígand has a lone paír of electrons that can be donated to a metal íon to form a datíve covalent bond	
Transition metal ions take part in precipitation reactions	
$eg Cu^{2+}(aq) + 2OH(aq) \longrightarrow Cu(OH)_2(s)$	
$Cu(OH)_2$ is a blue precipitate, showing that a precipitation reaction has taken place	
Transition metal ions take part in ligand substitution reactions	
$eg [Cu(H_2O)_6]^{2+}(aq) + 4NH_3(aq) \longrightarrow [Cu(NH_3)_4(H_2O)_2]^{2+}(aq) + 4H_2O(l)$	
The pale blue solution turns into a deep blue solution. This	
colour change suggests that a different ligand is now attached to the Cu^{2+} ion.	
Transition metal ions take part in redox reactions	
$eg 5Fe^{2*} + MnO_{\mu}^{-} + 8H^* \longrightarrow 5Fe^{3*} + Mn^{2*} + 4H_{\gamma}O$	
The deep purple manganate colour is decolourised and this shows that the MnO_{4}^{-1} ions have reacted.	
Many transition metal complexes have an octahedral shape, e.g. $[Cu(H_{2}O_{6})]^{2+}$ with bond angles of 90 °.	


There are also square planar shapes, as in platin, $PtCl_2(NH_3)_2$. The bond angle is also 90 °

Stereoisomerism is when the atoms are connected together in the same way but are connected differently. There are two types is stereoisomerism in transition metal complexes. cis-trans and optical.


For cis-trans isomerism, you need two different ligands with at least two of each. The cis-isomer has ligands that are the same are next to each other. In the trans isomer, has ligands that are the same are opposite. Both octahedral and square planar complexes can have cis-trans isomers.

 $Ni(NH_1)_{Cl_1}$ has cis-trans isomerism. See below.

Optical isomerism happens when you have multidentate ligands such as $H_2NCH_2CH_2NH_2$ ('en'). You need an octahedral complex ion and the two isomers are non-superimposable mirror images of one another.

 $[Ni(en)_{1}]^{2+}$ has optical isomerism. See below.

[Total: 20]

An excellent response throughout. The candidate has clearly learnt this work very thoroughly and has constructed a well-sequenced and extremely clear response. The use of carefully drawn 3D diagrams greatly enhances the candidate's answer.

Paper Total: [100]