

GCE

Chemistry A

Unit H033/02: Chemistry in depth

Advanced Subsidiary GCE

Mark Scheme for June 2017

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2017

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

Annotations

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
_	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Annotation	Meaning
 Image: A start of the start of	Correct response
×	Incorrect response
	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
11	Level 1
LZ	Level 2
13	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

Q	luesti	ion	Answer	Marks	Guidance
1	(a)		heterogeneous (the catalyst is in) a different state/phase (of matter to the reactants and products) ✓	2	
			<i>catalyst</i> (a substance that) increases the rate of/speeds up a (chemical) reaction/provides a route of lower activation enthalpy AND does not get used up (in the process) ✓		for <i>catalyst</i> AND , IGNORE 'does not take part in the reaction' unless it is included along with 'does not get used up' in which case it is a CON ALLOW 'not chemically changed' IF qualified by 'at end of reaction' NOT simply provides an alternative route or lower the activation enthalpy (must have both)
1	(b)	(i)	the student is incorrect the student should use equal amounts/number of moles /number of particles ✓	1	there is no mark for 'incorrect' – the mark is awarded for the explanation IGNORE references to particle size as question states powdered compounds
1	(b)	(ii)	 Any two from: ✓ (for both) concentration of hydrogen peroxide/solution volume of solution temperature (of solution) 	1	NOT 'amount' instead of 'volume'
1	(c)	(i)	line of best fit drawn to exclude anomaly at (25, 55.0) \checkmark	1	look for a best fit line that goes above the anomalous point and levels off at 63
1	(c)	(ii)	manganese(IV) oxide (is the most effective catalyst) it produces most oxygen/gas in the shortest time/a given/stated time/at the fastest rate/it has the steepest curve ✓	1	explanation must include reference to rate or time
1	(c)	(iii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer is 5.6×10^{-5} or 5.5×10^{-5} (2 or more sf) (mol s ⁻¹) award 2 marks (volume of O ₂ at 15 s = 20.0 cm ³) amount of O ₂ at RTP = (20.0/24000) = 8.333 x 10 ⁻⁴ mol \checkmark (average rate =) (8.333 x 10 ⁻⁴ /15.0) = 5.6 x 10 ⁻⁵ (mol s ⁻¹) \checkmark	2	Alternative method rate = $20/15 = 1.333 \text{ cm}^3 \text{ s}^{-1} \checkmark$ = $1.333/24000 = 5.6 \times 10^{-5} \text{ mol s}^1 \checkmark$ ALLOW 5.5 x $10^{-5} \text{ (mol s}^{-1)}$ if amount is rounded to 2 sf ALLOW ECF on final answer if MP1 is correctly calculated, but for manganese(IV) oxide. Answer is 1.3×10^{-4} (again, allow 2 or more sf) DO NOT ALLOW calculation based on pV=nRT

Q	uesti	on	Answer	Marks	Guidance
1	(d)			2	ALLOW any branched alkane containing 6-carbon atoms
			 ✓(for branched alkane, eg as shown) ✓ (for methylpropene) 		
1	(e)	(i)	 Stage 1 reactant(s) adsorbed/bond to surface of catalyst Stage 2 (reactant) bonds (weaken) and break Stage 3 (product) new bonds form Stage 4 product(s) desorbed from surface of catalyst ✓ (for Stages 1 and 4) ✓ (for Stages 2 and 3) 	2	In Stage 1, 'absorbed' is a CON ALLOW '(reactant) forms <u>weak</u> bonds with catalyst' ALLOW reference to 'chemisorption' In Stage 4, ALLOW 'leaves/diffuses' for 'desorbed from' but DO NOT ALLOW 'dissociates from'
1	(e)	(ii)	(the poison) blocks the active sites/surface \checkmark	1	
1	(f)	(i)	$F \longrightarrow Cl^{+} + F \longrightarrow Cl^{+} + F \longrightarrow Cl^{-} F$ $F \longrightarrow F \qquad F$	1	ALLOW both products without 'dot' but not one with, one without. ALLOW 'CF ₃ ' instead of full structural.
1	(f)	(ii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer is 346 (nm) award 3 marks energy required to break a single C-Cl bond = $(346 / 6.02 \times 10^{23}) = 5.75 \times 10^{-22}$ (kJ) \checkmark E = hv \therefore v = E/h (minimum) frequency of radiation required = $(5.75 \times 10^{-22} \times 1000/6.63 \times 10^{-34}) = 8.67 \times 10^{14}$ (Hz) \checkmark C = v λ $\therefore \lambda = c/v$ (maximum) wavelength of radiation required = $(3.00 \times 10^8/8.67 \times 10^{14}) = 3.46 \times 10^{-7}$ (m) = 346 (nm) (3 sf) \checkmark	3	The working for an incorrect answer MUST be checked in detail. Do be aware that candidates may well multiply/divide the numbers in a different order to that shown in the answer column so the numbers in this method of working may not necessarily be seen. However, candidates should be using $E = hv$, $c = v\lambda$ (or correct combination) and a conversion into nm.

1	(g)	Please refer to the marking instructions on page 4 of this	6	1.1 (x4)	Indicative Scientific points include:
		mark scheme for guidance on how to mark this question.		3.1 (x2)	AO1.1 Description of and comparison of oxygen and chlorine atoms in the breakdown of ozone
		Level 3 (5 - 6 marks)			Role of oxygen:
		Gives a detailed description (to include equations in parts 1 and 2) AND a comparison of relative effects.			 atoms/radicals react with ozone (in the stratosphere)
		There is a well-developed line of reasoning which is clear and logically structured. The information presented is			$\circ 0 + 0_3 \rightarrow 20_2$
		relevant and substantiated.			Role of CI in removing O ₃
		Level 2 (3-4 marks)			 chlorine radicals react with ozone Cl + O₃ → ClO + O₂
		Less detailed description and comparison (equations may be included)			 CIO react with oxygen atoms regenerating the chlorine radical
		OR			$\circ ClO + O \rightarrow Cl + O_2$
		Detailed description and no comparison ORA			◦ overall reaction is the removal of ozone $0 + O_3 \rightarrow 2O_2$
		There is a line of reasoning presented with some structure. The information presented in the most part relevant and supported by some evidence.			AO3.1 Make judgements: Comparison of relative effects
		Level 1 (1-2 marks)			 the chlorine radical is in a catalytic cycle AW one Cl atom can remove many ozone
		Limited description and comparison			molecules
		There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.			 one O atom can only remove one ozone molecule
		0 marks			
		No response or no response worthy of credit			
		Total	23		

Q	uesti	on	Answer	Marks	Guidance
2	(a)		 − CH – CH₂ – ↓ ↓	1	ALLOW C_6H_5 for phenyl group IGNORE brackets around repeating unit and use of 'n' to indicate a large number
2	(b)	(i)	Bond A – pi/ π (-bond) Bond B – sigma/ σ (-bond) \checkmark	1	
2	(b)	(ii)	Bond angle $C = 120(^{\circ}) \checkmark$ Explanation there are 3 groups of electrons around the C-atom \checkmark (which) repel so that they are as far apart as possible \checkmark	3	 ALLOW 'areas of electron density' for 'groups of electrons' ALLOW arrange to minimise the repulsion between them DO NOT ALLOW 'repel as much as possible' unless qualified by the idea of 'minimising repulsion' DO NOT ALLOW 'three sets of bonding pairs' DO NOT ALLOW 'bonds repel' unless qualified by reference to 'electrons'
2	(c)	(i)	yellow/orange/brown to colourless ✓	1	ALLOW any colour or combination of colours but no other colour DO NOT ALLOW 'decolorised' or 'loses its colour' IGNORE clear Any reference to 'red' is a CON
2	(c)	(ii)	carbocation 🖌	1	ALLOW carbonium ion DO NOT ALLOW 'carbon cation'
2	(c)	(iii)	chloride ions/Cl ⁻ can attack/react with/bond with/combine with the carbocation/intermediate (in the second step of the mechanism) as well as bromide ions/Br ⁻ ✓	1	Answer must refer to the carbocation/intermediate or if not, to the second step of the mechanism to get the mark

HC)33/02	2	Mark scl	neme		June 2017
2	(d)		 (there are) two different atoms/groups of atoms bonded/attached to the two carbon atoms of the double bond/C=C ✓ (and) there is no/limited (free) rotation about this bond/the C=C ✓ 	2	DO NOT ALLOW 'movement' unless qualified by 'rotational'	
2	(e)	(i)	HBr/hydrogen bromide 🖌	1	ALLOW BrH	
2	(e)	(ii)	$\begin{array}{c} C_{6}H_{5} \\ Br & C \\ H & C \\ H$	1	ALLOW other correct representations, eg	
					ALLOW 'dashed wedge' for 'dotted line'	
2	(e)	(iii)	the hydroxyl group/OH/functional group is bonded to a carbon atom: with (only) one hydrogen atom OR attached to two carbon atoms ✓	1	IGNORE any reference to hydroxide (ion)/OH ⁻ IGNORE 'it' for the OH group	
2	(e)	(iv)	$O = C - CH_3$	1	ALLOW any unambiguous structure	
			Total	14		

Q	Question		Answer		Guidance
3	(a)	(i)	$[M_r \text{ of NaOH} = 40 \text{ g mol}^{-1}$ 0.5 tonne = 5 x 10 ⁵ g] amount of NaOH = (5 x 10 ⁵ / 40) = 12500 (mol) \checkmark	1	Answer only (to 2 or more sf) (not the working) scores the mark
3	(a)	(ii)	[amount of Cl_2 formed in same time as 0.5 mol NaOH = ($\frac{1}{2} \times 12500$) = 6250 (mol) M of $Cl_2 = 71$] mass of $Cl_2 = [(6250 \times 71) = 443750 \text{ g} =]$ 0.44 (tonnes) \checkmark ALLOW ECF from (a)(i)	1	Answer only (to 2 or more sf) (not the working) scores the mark
3	(a)	(iii)	volume [= (6250 x 24) = 150 000 dm ³] = 150 m ³ ✓ ALLOW ECF from (a)(i) and/or (ii)	1	Answer only (to 2 or more sf) (not the working) scores the mark
3	(b)		similarity: chlorine is still produced (at the anode/positive electrode) difference: sodium is produced/hydrogen/hydroxide ion is not produced (at the cathode/negative electrode) ✓	1	
3	(c)		 (i) anode (+): yellow/orange/brown (colour in solution) (ii) cathode (-): gas (evolved)/bubbles/effervescence /fizzing ✓ (for both i and ii) 	1	ALLOW any of these colour or combination of them but no other colour at (i) IGNORE iodine at (i) and hydrogen at (ii)
3	(d)		(i) anode (+): $2Br^{-} \rightarrow Br_2 + 2e^{-} \checkmark$ (ii) cathode (-): $2H_2O + 2e^{-} \rightarrow 2OH^{-} + H_2\checkmark$	2	ALLOW multiples or halves of equations ALLOW $2Br^{-} - 2e^{-} \rightarrow Br_{2}$ ALLOW $2H^{+} + 2e^{-} \rightarrow H_{2}$ ALLOW 'e' for 'e ⁻ ' IGNORE state symbols
3	(e)	(i)	Brown/orange/yellow 🖌	1	ALLOW any of these colours (or combination of them) but no other colour IGNORE colourless
3	(e)	(ii)	$Br_2 + 2I^{-} \to I_2 + 2Br^{-} \checkmark$	1	IGNORE state symbols
3	(f)	(i)	$2l^- \rightarrow l_2 + 2e^- \checkmark$	1	ALLOW $ ^{-} \rightarrow \frac{1}{2} _{2} + e^{-}$ ALLOW 'e' for 'e ⁻ ' ALLOW 2 ⁻ - 2e ⁻ $\rightarrow _{2}$

H033/02		2	Mark scheme				
3	(f)	(ii)	chlorine/Cl₂ ✓	1	IGNORE CI		
3	(g)		 halogens/they increase in atomic radius/size/get bigger/the outer shell is further from the nucleus/core/ shielding (by completed inner shells) from top to bottom of/going down the Group ✓ the (electrostatic) attraction between the nucleus/core and the outer electrons decreases from top to bottom of/going down the Group ✓ halogens/they gain an extra electron less readily/easily from top to bottom of/going down the Group ✓ 	3	ALLOW any reference to halogen as either atom or molecule		
			Total	14			

Q	Question		Answer	Marks	Guidance
4	(a)	(i)	(statement 1): equations should have (g) for both state symbols ✓	4	MP1, 3 and 4 are awarded for correcting the incorrect chemistry and not for simply stating 'incorrect'
			(statement 2): is correct ✓		
			(statement 3): the outer (shell) electrons in barium are further from/more well shielded from the nucleus (than in calcium) ✓ (the electrostatic) attraction between the nucleus/core and the outer electrons in barium is less (than in calcium) ✓		DO NOT ALLOW 'force' for 'attraction'
4	(a)	(ii)	FIRST CHECK ANSWER ON ANSWER LINE if answer = 754 (cm ³) award 2 marks (must be 3sf) amount of Ca = $(1.26/40.1) = 3.14 \times 10^{-2}$ (mol)	2	ALLOW ECF on sf from a correct seen calculation Note that if A _r of Ca is used as 40, answer is
			amount of $H_2 = 3.14 \times 10^{-2} \text{ (mol)}$ volume of hydrogen = (3.14 x 10 ⁻² x 24000) = 754 (cm ³) \checkmark answer to 3sf \checkmark		756 DO NOT ALLOW an answer from calculation based on pV=nRT BUT the sf mark can still be awarded

(Question	Answer		Guidance	
4	(b)	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question.	6	Indicative scientific points include AO3.3 Develop practical techniques and procedures - Description of experiment	
		Level 3 (5-6 marks)		Description:	
		Detailed description of an experiment that would work with reason(s) AND detailed suggested expected results		 heating carbonate and bubbling gas into limewater / measuring volume of 	
		There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.		 gas / measuring mass loss equal amounts/number of moles of each carbonate heated using the same Bunsen flame AW 	
		Level 2 (3-4 marks)		• the first to go cloudy has the lower	
		Outline description of an experiment either with reason(s) or suggested expected results		thermal stability (or alternative method based on amounts of cloudiness in	
		OR		certain time etc) Reasons: not just 'fair test'	
		Detailed description of the experiment without reason(s) or suggested expected results		comparing same number of particles	
		There is a line of reasoning presented with some structure. The information presented in the most part relevant and supported by some evidence.		 delivering the same energy / heat A03.4 Interpretation - Suggested expected results 	
				• $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$	
		Level 1 (1-2 marks)		(or equation for strontium) or describe	
		Outline description of an experiment		 CO₂ given off shown by limewater 	
		OR		going cloudy / gas collected / loss of	
		Outline of suggestions for expected results		mass	
		There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.		 calcium carbonate decomposes quick than strontium carbonate AW 	
		0 marks			

June 2017

(Question		Answer	Marks	Guidance
			No response or no response worthy of credit		
4	(c)	(i)	it is the mean of 20.80 (cm ³) and 20.90 (cm ³) which are concordant/within 0.1(0) cm ³ OR 21.55 (cm ³) is a trial/rough titre/overshot the end-point/is an anomaly/outlier/not concordant/within 0.1(0) cm ³ ✓	1	
4	(c)	(ii)	(% error) = ([2 x 0.05]/20.80) = 0.5 (%) ✓	1	ALLOW 0.48 (%)
					ALLOW ±0.5/0.48 (%)
4	(c)	(iii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE	3	ALLOW ecf
			If answer is 1.54 (g dm ⁻³) (to 2 or more sf) award 3 marks		ALLOW 2 or more sf.
			(calculation of amount $Ca(OH)_2$ in titre):		
			amount of HCl = $(20.85/1000 \times 0.050) = 1.0425 \times 10^{-3}$ (mol)		
			amount of Ca(OH) ₂ in 25 cm ³ = ($\frac{1}{2}$ x 1.0425 x 10 ⁻³) = 5.2125 x 10 ⁻⁴ (mol) \checkmark		
			(calculation of amount Ca(OH) ₂ per dm^3):		
			$[Ca(OH)_2] = (5.2125 \times 10^{-4} \times 1000/25.0)$ = 2.085 x 10 ⁻² (mol dm ⁻³) \checkmark		
			(calculation of mass Ca(OH) ₂ per dm^3):		
			M of Ca(OH) ₂ = $40.1 + 2(16.0 + 1.0) = 74.1 \text{ (g mol}^{-1}\text{)}$		
			concentration of Ca(OH) ₂ = $(2.085 \times 10^{-2} \times 74.1)$ = 1.54 (g dm ⁻³) \checkmark		
4	(d)		the number of protons in the nucleus/atom \checkmark	1	NOT just 'element'

H033/02			Mark scheme			June 2017
Question		tion	Answer		Guidance	
4	(e)		Na Na Na International Intern	1		
			Total	19		

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.gualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2017