

Chemistry B (Salters)

Advanced Subsidiary GCE

Unit F331: Chemistry for Life

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

Ques	stion		Answer	Mark	Guidance	
1	(a)	(i)	$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$	1	ALLOW multiples/halves etc	
		(ii)	(Bonds broken: { $(2x347) + (8x413) + (5x498)$ }) = <u>6488</u> \checkmark	3	ecf from equation in 1ai	
Use ticks (with ecf's)			(Bonds formed: {(6x805) + (8x464)}) = $8542 \checkmark$ answer = -2054 \checkmark		ecf's carry forward on first two marks (ignore subsequent calculation if answer correct on answer line)	
and x's					NO ecf if sums for broken and made not obvious	
					NOTE: both sign and value needed for this mark, even using ecf numbers	
					-2054 always scores 3 regardless of equation in 1ai +2054 scores 2	
		(iii)	Any two of: difficulty using gaseous fuel / gas can escape / not all gas burnt;	2	ALLOW answers in terms of difficulty in measuring mass/amount of gas used	
			incomplete combustion / not fully combusted;			
			heat/energy lost/transferred to the surroundings OR not all energy transferred to water		'heat loss' must be to something e.g. surroundings, air, calorimeter AW	
			$\checkmark\checkmark$		IGNORE refs to maintaining standard conditions NOT evaporation from wick	
	(b)	(i)		2	Any skeletal alkane and corresponding alkene shown scores 1	
			one mark for each correct structure $\checkmark \checkmark$		IGNORE dot/cross drafting or dots at junctions Any C atoms shown do not score	

Question	Answer	Mark	Guidance
(ii)	100 x 36/42 = 85.7 % / 86 ✓	1	ALLOW 2 or more sf 85 does not score
(iii)	(Due to a higher % carbon) incomplete combustion (in 1996 torch) ✓	2	ALLOW "this" causes incomplete combustion
	(causing glowing) carbon particles/particulates ✓		ALLOW carbon/soot/particulates and etc. <u>burns /</u> <u>combusts / reacts with oxygen</u> with a yellow flame for second mark. To score the second mark it must be clear the candidate is talking about elemental carbon, NOT just the higher percentage carbon in the compound. ALLOW 'unburnt carbon'
(c) (i)	$\begin{array}{c} - & \bullet & \bullet \\ \bullet & - & \bullet & \bullet \end{array}$ a structure of circles \checkmark $\begin{array}{c} \text{delocalised/sea of electrons labelled} \checkmark$	3	 maximum 2 marks if no diagram drawn structure = at least two rows; need not be 'close packed'. circles may touch IGNORE free/pool/cloud of electrons. ALLOW ring around all the ions labelled 'delocalised/sea of electrons'
	cations/metal residues shown as in diagram or labelled (incorrect label of cation is CON this mark, if anions and cations are shown CON this mark) ✓		'protons'/nuclei/positive metal atoms CONS this ALLOW Mg^+ / AI^+ / Mg^{2+} / AI^{3+} as labels for ions, allow 2+/3+
(ii)	electrons exist in discrete / specific / quantised energy levels ✓	1	must say 'electron/electronic' and ALLOW any reference to arrangement e.g. shells/configuration DO NOT ALLOW reference to <u>number</u> of shells CON IGNORE answer in terms of origin of line spectra
	Total	15	

Question			Answer			Mark	Guidance
2 (a)	Isotope ¹⁸ O ¹⁶ O	protons 8 8	electrons 8 8	neutrons 10 8		1	all correct for mark
(b) (i) Use ticks and x's	\checkmark				electric wly (ora) / 5 mass /	5	Ticks needed ALLOW 'ions are made', negative ions CON DO NOT ALLOW 'by magnetic / electromagnetic field' for this mark CON This statement scores 2 nd and 3 rd marking points At correct point in sequence, e.g. ionised > drift region scores this mark, BUT ionised>drift region>accelerated does not score IGNORE references to molecules/atoms for last marking point IGNORE references to how detector measures abundance References to larger/smaller ions should be ignored
(ii)		<u>6) + (0.36 x 1</u> 100 6.01 OR corr		on of their p	rocess ✓	3	No need to evaluate for first mark. Answer 16.01 scores all 3; 16.007() scores 2 Process must involve numbers provided in the question sig fig mark only scored if some recognisable working

Question	Answer	Mark	Guidance
(c)	same group / Group 2/II mentioned ✓	2	IGNORE answers in terms of solubility of carbonates/reactivity of elements CON first mark if not talking about calcium and magnesium
	same number of outer (shell) electrons OR same (or similar) chemistry OR both form 2+ ions/lose two electrons OR react in same (or similar) way ✓		IGNORE 'properties'
(d) (i)	⁴ / ₂ He one mark for 4,2 ✓ one for He ✓	2	ecf on Z e.g. 4/3 Li scores 1 4,2 on wrong side does not score this mark He ²⁺ does not score He mark
(ii)	Any two from three below: high temp high kinetic energy / high velocity / high speed high pressure ✓✓	3	ALLOW 'a lot of heat' AW DO NOT ALLOW just 'heat' 'pressure' or 'hot' High temperature <u>and</u> pressure etc. scores 2
	repulsion between nuclei needs to be overcome AW \checkmark		MUST be 'nuclei', not '(positive) atoms/ions' etc.
	Total	16	

Question	Answer		Guidance
3 (a) (i)	correct bonding electrons ✓ H C S H H C S H H lone pairs on sulfur ✓	2	ALLOW different symbols e.g. triangles etc/ ALLOW outer electron shell circles
(ii)	$M_{\rm r} = 48.1 / 48 \checkmark$ $\frac{0.02 \times 10^{-6}}{48(.1)} = 4 \times 10^{-10}$ calculation \checkmark	2	ecf on M _r 4.16 / 4.166 / 4.2 / 4 / 4.17 or 4.158 x 10 ⁻¹⁰ on answer line scores both marks ALLOW 1 or more sf 7.69 x10 ⁻¹⁰ (Z used) scores 1
(b) (i)	C₃H₅SO ✓	1	ANY order DO NOT ALLOW lower case h

Question	Answer	Mark	Guidance
(ii) Use ticks and x's	 'a' – <u>four</u> (bonding) pairs/sets/areas of electron density ✓ 'b' – <u>three</u> (bonding) sets/areas of electron density NOT 3 electron pairs ✓ 	4	Ticks needed IGNORE references to shapes ALLOW 'groups/sets of electrons' NOT 'bonds' (unless qualified by reference to containing electrons), NOT electronegativity
	<u>Areas of electron density/electrons</u> repel ✓		electron repulsion mark: 'electrons' can be implied (e.g. 'these repel' after 'groups of electrons' in earlier parts of answer) ALLOW 'bonds repelling' for this mark DO NOT ALLOW <u>atoms</u> repel
	as far apart as possible / minimise electron repulsion \checkmark		Must be linked to bonds/electrons/areas of charge/atoms (only for this marking point) repelling Look for a CON e.g. 'repel as much as possible' if this explanation is stated twice
(c)	advantage: large reserves/supply/abundance (of coal) AW ✓	3	IGNORE references to CO ₂ production / greenhouse gases DO NOT ALLOW readily available / easier to mine / renewable DO NOT ALLOW more energy per mole
	disadvantage: (sulfur burns to become) SO ₂ /SO _x OR acid rain ash formed smoke/soot/particulates smog a named relevant health issue e.g. bronchitis, asthma		If a consequence is cited and incorrect, this CONS this disadvantage e.g. SO ₂ giving photochemical smog ALLOW words i.e. sulphur oxides / sulphur compounds IGNORE pollutants and harmful by-products Mark whole list
	Any two of disadvantages $\checkmark \checkmark$		

Question	Answer	Mark	Guidance
(d)	200 x 4.2 x 25 ✓ = 21000 J ✓	2	ALLOW 21 kJ <u>if printed unit adjusted</u> ALLOW ecf on mass only 10 instead of 200 (1050 scores 1) IGNORE sign
(e)	It (the melting point of S) would be lower ORA ✓ S – (small) molecules / (simple) molecular AND C – giant structure / network / lattice ✓	2	Must be comparative both structures for second mark IGNORE 'covalent' IGNORE reference to intermolecular forces/bonds
	Total	16	

Que	estion	۱	Answer	Mark	Guidance	
4	(a)	(i)	Arene	1	ALLOW aromatic	
		(ii)	H = H = H = H $H = H = H$ $H = H = H$ $H = H$	1	can be straight line structure	
	(b)	(i)	lower (combustion) temp OR less nitrogen (compounds) in tyres ✓	1	DO NOT ALLOW not enough energy ALLOW 'not so hot' ALLOW no nitrogen (compounds) in tyres Assume 'they' refers to TDF	
		(ii)	carbon monoxide / CO / sulfur dioxide / SO ₂ / SO _x / sulfur oxide \checkmark	1	DO NOT ALLOW carbon dioxide	
	(c)	(i)	Unsaturated ✓	1		
		(ii)	cycloalkane / arene ✓	1	ALLOW cyclic, aromatic, benzene rings	
		(iii)	hydrogen/H₂ ✓	1		
	(d)	(i)	heterogeneous – catalyst and reactant(s) in different phase / state ✓ catalyst provides a route/pathway/mechanism of lower activation enthalpy/energy OR speeds up a reaction but can be recovered unchanged at the end/regenerated/not used up ✓	2	ALLOW catalyst solid reactants gases/liquids DO NOT ALLOW 'speeds up reaction' without qualification IGNORE reduces activation energy NOT 'not involved'	

Question	Answer	Mark	Guidance
(ii)	a <u>d</u> sorption of reactants onto (surface of) catalyst ✓	4	QWC adsorption/adsorb (not a separate mark) NOT adsorped/adsorbtion Note: If QWC 'word' not there or spelt incorrectly the first mark is not scored
	bonds break within/in reactant / molecules OR intramolecular bonds break OR bonds break between atoms in reactants / molecules ✓		NOT bonds <u>between</u> – it must be clear that it is the bonds within the molecules that are breaking ALLOW 'in molecules / in (or of) reactants' ALLOW reactant(s) bonds break
	<u>new</u> bonds form OR bonds form in products ✓		'Bonds form' on its own does not score this marking point NOT 'bonds form between products' it has to be new bonds IGNORE references to 'between' reactants or molecules
	product molecules desorb / diffuse / leave / released from catalyst (surface) ✓		NOT 'are removed' from surface or 'are dispersed' IGNORE references to bonds formed and broken with catalyst surface If order wrong max 3 Labelled diagrams could score all marks (Note: The marks need not match the number of the step since candidates may have added extra steps or missed steps out, but they must be in the correct order.)
	Total	13	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

