RECOGNISING ACHIEVEMENT

CONFIDENTIAL
January 2006

SUBJECT OFFICER: Steven Evans

CHECKED BY	APPROVED (Tick or initials or signature)	DATE

ADVICE TO EXAMINERS ON THE ANNOTATION OF SCRIPTS

1. Please ensure that you use the final version of the Mark Scheme. You are advised to destroy all draft versions.
2. Please mark all post-standardisation scripts in red ink. A tick () should be used for each answer judged worthy of a mark. Ticks should be placed as close as possible to the point in the answer where the mark has been awarded. The number of ticks should be the same as the number of marks awarded. If two (or more) responses are required for one mark, use only one tick. Half marks ($1 / 2$) should never be used.
3. The following annotations may be used when marking. No comments should be written on scripts unless they relate directly to the mark scheme. Remember that scripts may be returned to Centres.
```
x = incorrect response (errors may also be underlined)
^ = omission mark
bod = benefit of the doubt (where professional judgement has been used)
ecf = error carried forward (in consequential marking)
con = contradiction (in cases where candidates contradict themselves in the same response)
sf = error in the number of significant figures
```

4. The marks awarded for each part question should be indicated in the margin provided on the right hand side of the page. The mark total for each question should be ringed at the end of the question, on the right hand side. These totals should be added up to give the final total on the front of the paper.
5. In cases where candidates are required to give a specific number of answers, (e.g. 'give three reasons'), mark the first answer(s) given up to the total number required. Strike through the remainder. In specific cases where this rule cannot be applied, the exact procedure to be used is given in the mark scheme.
6. Correct answers to calculations should gain full credit even if no working is shown, unless otherwise indicated in the mark scheme. (An instruction on the paper to 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)
7. Strike through all blank spaces and/or pages in order to give a clear indication that the whole of the script has been considered.
8. An element of professional judgement is required in the marking of any written paper, and candidates may not use the exact words that appear in the mark scheme. If the science is correct and answers the question, then the mark(s) should normally be credited. If you are in doubt about the validity of any answer, contact your Team Leader/Principal Examiner for guidance.

	l	$=$ alternative and acceptable answers for the same marking			
Abbreviations,					
annotations and					
conventions used in the					
Mark Scheme			\quad	point $=$ separates marking points	
:---	:---				
NOT = answers which are not worthy of credit					
($)$	words which are not essential to gain credit				
= (underlining) key words which must be used to gain credit					
	ecf $=$ error carried forward				
AW $=$ alternative wording					
ora	$=$ or reverse argument				

Mark Scheme Page 1 of 4		$\begin{aligned} & \text { Unit Code } \\ & 2848 \end{aligned}$	$\begin{gathered} \text { Session } \\ \text { Jan } \end{gathered}$	$\begin{aligned} & \text { Year } \\ & 2006 \end{aligned}$	$\begin{aligned} & \text { Versic } \\ & \text { Pre-Sta } \end{aligned}$	
Question	Expected Answers					Marks
1 ai	air/ oxygen $/ \mathrm{O}_{2}$ (plus nothing else) (1); (blister) copper/Cu NOT pure copper (IGNORE +sulphur dioxide/SO S_{2} /slag only) (1)					2
1 a ii	liquid/(I)/molten					1
1 a iii	$1 \%=1 \times 1000000 / 100=10^{4} / 10000(1)$					1
1 a iv	purification/refining/electrolysis/making brass NOT smelting					1
1 bi	+1 (1); 0 (1); 0 (1); +4 (1) ALLOW 1+ and 4+ or 1 and 4 for (1)					4
1 b ii	redox/ oxidation/ reduction					1
1 b iii	copper(I) sulphide ignore gaps ecf from oxidation state in (i)					1
1 ci	11 electrons (1) $4 s^{1} 3 d^{10}$ or reversed (1);					2
1 cii	d/allow D IGNORE transition metals					1
1 di	methyl orange/ phenolphthalein allow small spelling errors and other suitable acid-base indicators. NOT Universal indicator or litmus					1
1 dii	$21.2 \times 0.00100 / 1000(1)=2.12 \times 10^{-5}$ ecf if one error (1)					2
1 d iii	same answer as (ii)					1
1 d iv	Answer to d(iii) $\times 40\left[2.12 \times 10^{-5} \times 1000 / 25=8.48 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}\right]$ (1) Do not accept rounding to 1 sf.					1
1 e	sulphur dioxide/ SO_{2}; plus three from dissolves in rain/causes acid rain; damages trees/plants/ lakes/ fish/buildings/human health/ leaches aluminium; reacts with oxygen and water converts it to sulphuric acid IGNORE greenhouse gases and photochemical smog QWC: 2 sentences, spelling, punctuation and grammar correct (1 error) see note ALLOW "Sulphur dioxide" alone at the start. Underline first two errors.					4
						24

Mark Scheme Page 2 of 4		$\begin{aligned} & \text { Unit Code } \\ & 2848 \end{aligned}$	$\begin{gathered} \text { Session } \\ \text { Jan } \end{gathered}$	$\begin{aligned} & \text { Year } \\ & 2006 \end{aligned}$	$\begin{aligned} & \text { Vers } \\ & \text { Pre-S } \end{aligned}$	
2 a	(drain)pipes/ window frames (AW)/ doors/ roofing Must be part of fabric of house.					1
2 bi	(1-)chloroethene correct spelling required					1
2 b ii	electrophilic (1); addition (1) extra selections are CON					2
2 b iii	elimination (1)					1
2 b iv	addition (polymerisation) NOT additional					1
2 ci	permanent dipole-(permanent) dipole no others					1
2 c ii	 $\partial+, \partial-$ correct (1); indication of attraction between correct groups(1)					2
2 di	 (or different order) (2); one error (1) allow less displayed allow monomer units reversed connection to OCOCH_{3} must be thro O					2
2 dii	copolymer					1
2 e	chains can slide/move over each other (AW implying relative movement) (1) intermolecular / permanent dipole-permanent dipole (allow abbreviations) forces weaker (NOT fewer) (1) working over longer distance (AW implying greater separation) (1)					3
2 fi	hydrogen (1); Ni, hot/ Pt (room t and p ALLOW high t) (1) second mark depends on first					2
2 fii	primary (1) as OH attached to $\mathrm{CH}_{2} / \mathrm{C}$ with OH attached to one other C / OH at end of chain/only one R group (1)					2
2 fiii	aldehyde ALLOW carbonyl					1
2 fiv	(potassium/sodium) dichromate/ correct formula (1); (sulphuric) acid IGNORE conc (1) heat/ raised temp (ALLOW reflux) provided dichromate mentioned(1);					3
2 gi	M_{r} vinyl chloride $=62.5$, ethanol $=46$ (1);					1
2 g ii	moles vinyl chloride $=10 / 62.5(=0.16)$ moles ethanol $=1.5 / 46(=0.0326 / 0.033)$ ecf (1)					1
2 g iii	= moles vinyl chloride (0.16)					1
2 g iv	$\%=0.0326 \times 100 / 0.16=20 \%$ (ecf, eg ALLOW 21\% if 0.033 moles ethanol used) (1) 2 sf (1) mark separately provided number follows from some working shown					2
2 hi	water (1); plus one from: catalyst with high temp and press; catalyst of sulphuric/phosphoric acid depends on first					2
2 hii	yield low/ more steps/ chlorine/hydrogen chloride dangerous/ pollutant NOT cost-related					1

Mark Scheme Page 3 of 4		Unit Code 2848	$\begin{gathered} \text { Session } \\ \text { Jan } \end{gathered}$	$\begin{aligned} & \text { Year } \\ & 2006 \end{aligned}$		
3 ai	halogenoalkane/bromoalkane (1) ALLOW haloalkane					1
3 a ii	(1); 2-bromopropane ecf for 1-bromopropane (1) ignore positions of dashes, commas and spaces					2
3 bi	aerosol propellants/ blowing agents/ refrigerants (coolants)/ air conditioning coolants/ fire extinguishers					1
3 bii	three from not broken down/ unreactive in troposphere; broken down (AW) in stratosphere; by high energy/frequency uv/radiation; which cause homolytic fission/photodissociation chlorine atoms/radicals; break down ozone - catalysis implied two from $\mathrm{C}-\mathrm{Br}$ bond weaker (than $\mathrm{C}-\mathrm{Cl}$); can be broken by lower energy/ frequency uv/visible/light/radiation; or contains $\mathrm{C}-\mathrm{H}$ bonds; which cause it to be more reactive broken down/react in troposphere/before reaching stratosphere. QWC Logical and at least three words from list used correctly troposphere, stratosphere, uv, radiation, radical, catalyse/catalyst, homolytic fission, photodissociation					6
3 b iii	two from boiling point/volatility; flammability; toxicity/harm to health; cost of manufacture (AW); (un)reactivity/stability/ease of disposal. IGNORE greenhouse gases Mark all suggestions					2
3 ci	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} / \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH} / \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$. ALLOW propan-1-ol if formula correct in equation					1
3 cii	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \text { (etc as above) (l/aq) }+\mathrm{HBr}(\mathrm{~g} / \mathrm{aq}) \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br} \\ & \text { (etc)(I/aq) }+\mathrm{H}_{2} \mathrm{O} \text { (I) } \\ & \text { (1) for equation correct; ecf for incorrect } R \text { group } \\ & \text { (1) for state symbols (if first mark scored) } \end{aligned}$					2
3 c iii	(anhydrous) sodium sulphate/ other suitable salt (unless clearly hydrated)/silica gel NOT conc sulphuric, soda lime					1
3 c iv	(fractional) distillation					1
3 cv						3

Mark Scheme Page 4 of 4		$\begin{aligned} & \text { Unit Code } \\ & 2848 \end{aligned}$	$\begin{aligned} & \text { Session } \\ & \text { Jan } \end{aligned}$	$\begin{aligned} & \text { Year } \\ & 2006 \end{aligned}$		
4 a	alternative hydrocarbons (eg diesel)/ oxygenates/ lean burn engines/ more complete combustion (AW)/ hybrid engines/ fuel injection/oxygen sensors /reduced drag/ lighter cars (AW)					1
4 b	wind power/ wave power/ tidal power/ biomass/ nuclear/ geothermal/ hydroelectric/ solar power/cells/panels					1
4 ci	Sun (1); uv/visible / high frequency/ high energy end of spectrum/ between visible and X-ray (1)					2
4 c ii	makes bonds/molecules vibrate (more) (1); turned into kinetic energy/ move around faster which increases temperature (1)					2
4d i	Increased CO_{2} levels in troposphere $/ \mathrm{CO}_{2}(\mathrm{~g})$ moves equilibrium (position) in equation 4.1 to right* (1) Increased $\mathrm{CO}_{2}(\mathrm{aq})$ moves equilibrium (position) of equation 4.2 to right* (1) *or equilibrium producing identified products "equilibrium moves to right" scores 1 of first 2 HCO_{3}^{-}increases (1)					3
4 dii	rate of forward reaction = rate of back reaction (1); and one from: concentrations of reactants and products remain constant ; closed system					2
4 d iii	system not closed/ $\mathrm{CO}_{2}(\mathrm{~g})$ moves away from surface/ $\mathrm{CO}_{2}(\mathrm{aq})$ ionises (AW)					1
4 e	SiO_{2} giant covalent/ network solid/ lattice/ whole structure held together by covalent bonds (1) IGNORE "intermolecular" CO_{2} molecular (AW) (1) weak intermolecular forces (can be named and can be abbreviated ALLOW permanent dipole - permanent dipole)/less energy needed to separate molecules/ bonds in SiO_{2} are stronger (1)					3
						15

