RECOGNISING ACHIEVEMENT

## Subject: CHEMISTRY (SALTERS) Code: 2850 Chemistry for Life

## Session: Jan Year: 2006

Mark Scheme - FINAL
paper set date: 11/01/06

| MAXIMUM MARK | 75 |
| :--- | :--- |

Subject officer: Steven Evans


| CHECKED BY | APPROVED <br> (Tick or initials or signature) | DATE |
| :--- | :---: | :---: |
|  |  |  |

## ADVICE TO EXAMINERS ON THE ANNOTATION OF SCRIPTS

1. Please ensure that you use the final version of the Mark Scheme. You are advised to destroy all draft versions.
2. Please mark all post-standardisation scripts in red ink. A tick (3) should be used for each answer judged worthy of a mark. Ticks should be placed as close as possible to the point in the answer where the mark has been awarded. The number of ticks should be the same as the number of marks awarded. If two (or more) responses are required for one mark, use only one tick. Half marks ( $\frac{1}{2}$ ) should never be used.
3. The following annotations may be used when marking. No comments should be written on scripts unless they relate directly to the mark scheme. Remember that scripts may be returned to Centres.
x = incorrect response (errors may also be underlined)
$\wedge \quad=$ omission mark
bod = benefit of the doubt (where professional judgement has been used)
ecf = error carried forward (in consequential marking)
con = contradiction (in cases where candidates contradict themselves in the same response)
sf $\quad=$ error in the number of significant figures
4. The marks awarded for each part question should be indicated in the margin provided on the right hand side of the page. The mark total for each question should be ringed at the end of the question, on the right hand side. These totals should be added up to give the final total on the front of the paper.
5. In cases where candidates are required to give a specific number of answers, (e.g. 'give three reasons'), mark the first answer(s) given up to the total number required. Strike through the remainder. In specific cases where this rule cannot be applied, the exact procedure to be used is given in the mark scheme.
6. Correct answers to calculations should gain full credit even if no working is shown, unless otherwise indicated in the mark scheme. (An instruction on the paper to 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)
7. Strike through all blank spaces and/or pages in order to give a clear indication that the whole of the script has been considered.
8. An element of professional judgement is required in the marking of any written paper, and candidates may not use the exact words that appear in the mark scheme. If the science is correct and answers the question, then the mark(s) should normally be credited. If you are in doubt about the validity of any answer, contact your Team Leader/Principal Examiner for guidance.

| Mar <br> Page | Scheme of 4 | Unit Code $2850$ | Session <br> Jan | $\begin{aligned} & \text { Year } \\ & 2006 \end{aligned}$ | Version final |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 ai | Similarity: Same no./amount/of protons/electrons/atomic number/ <br> (NOT $\mathrm{A}_{\mathrm{r}}$ or same atomic charge) <br> Difference; Different no./amount/ of neutrons/different mass no/masses/atomic mass/one (more) neutron(1); <br> (use of 'it' or 'they' is fine) <br> (or specific numbers e.g. both have one proton- zero and one neutrons) |  |  |  | 2 |
| 1 a ii | $2{ }_{1}^{2} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}$ correct/consistent symbol(1); top and bottom add up(1); NB other possibilities, see example below, but must show fusion $\mathrm{eg}_{2}^{3} \mathrm{He}+{ }_{0}^{1} n$ scores 2 must be correct symbols e.g. not HE |  |  |  | 2 |
| 1 a iii | (Light) nuclei (1) (fuse/join/come together)(1); NOT atoms to form a heavier nucleus/atom/element or larger nucleus(1) any reference to bonding is a CON |  |  |  | 2 |
| 1 bi | Like/ positive charges/ protons(1) <br> (ignore references to ions unless neg -CON); repel(1) |  |  |  | 2 |
| 1 b ii | High/extreme pressure/gravity/density(1); Not - lots of pressure <br> high/extreme temp/extreme heat/energy/KE(1) allow high temp and pressure(2 marks) NOT intense temperature |  |  |  | 2 |
| 1 ci | $\mathrm{H}_{2}$ (with or without proton or mass number)(1); D/ ${ }_{1}^{2} \mathrm{H}(1)$; or in words eg hydrogen with an extra neutron symbols to right OK <br> NB a cation shown(1); - give this mark if cation shown in ci or cii(1); |  |  |  | 3 |
| 1 c ii | For peak at 3-HD/T (1); for peak at $4-\mathrm{D}_{2} / \mathrm{HT}$ (1) Allow one mark max. for reference to possible existence of an (heavier) isotope of (hydrogen) NB ${ }_{1}^{4} \mathrm{H}$ is a CON NOT contamination |  |  |  | 2 |
| 1 c iii | (relative) abundance/amount(of that isotope)/ proportion AW NOT concentration NOT intensity |  |  |  | 1 |
|  |  |  |  |  | 16 |


| Mark Scheme Page 2 of 4 |  | Unit Code 2850 | Session <br> Jan | $\begin{aligned} & \text { Year } \\ & 2006 \end{aligned}$ |  | rsion <br> NAL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 a | s aq(1) both correct |  |  |  |  | 1 |
| 2 b | Any of: Reactivity / ease of ion formation/ thermal stability of carbonates base strength of oxides/hydroxides |  |  |  |  | 1 |
| 2 ci | $[\mathrm{Mg}]^{2+} 2[\mathrm{Cl}]^{-}$charges both correct(1); no electrons around Mg <br> (allow 8) (1); (NB covalent structure - zero) <br> eight, with one different around $\mathrm{Cl}(1) ; 2 \mathrm{Cl}$-ions(1); either separate or x 2 |  |  |  |  | 4 |
| 2 c ii | Acid-base/alkali/neutralization/exothermic(1) |  |  |  |  | 1 |
| 2 d | Delocalized/'sea' / free electrons(1); can move/mobile(1); |  |  |  |  | 2 |
| 2 e | Mark the process (in any order) i.e. divide by $100(1)$; multiply by $1000(1)$; (x10 gets both these marks) divide by $24(1)$; sig figs(mark separately)(1); $\underline{0.054 \text { scores all four }}$ <br> NB CON wrong figure at start - looking for digits 13 (some using 1.0) |  |  |  |  | 4 |
| 2 f | 3000-3200 (1) |  |  |  |  | 1 |
| 2 g | Graph A(1); <br> Any two from the following three: <br> successive IE's get bigger/higher/harder to remove electrons/ AW(1); <br> big jump in/so much energy needed on electron 3 removed/Group 2 elements have two outer shell electrons (easier to remove)(1); <br> Hard(er) to remove electron from inner shell/(energy) level <br> /nearer nucleus(1) <br> Answer D could get first of above points only i.e. MAX 1 mark <br> Answers B or C - zero |  |  |  |  | 3 |
|  |  |  |  |  |  | 17 |


| Mark Scheme Page 3 of 4 |  | Unit Code $2850$ | Session <br> Jan | $\begin{aligned} & \text { Year } \\ & 2006 \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Question | Expected Answers |  |  |  |  | Marks |
| 3 ai | Reactants label to left of products(1); Reactants label below products(1); single headed 'vertical' arrow going up, labelled in words or using $\Delta \mathrm{H}(1)$ ecf for products below reactants |  |  |  |  | 3 |
| 3 a ii | Endothermic(1); |  |  |  |  | 1 |
| 3 bi | $\sum \Delta \mathrm{H}_{\mathrm{f}}$ products(1); $\sum \Delta \mathrm{H}_{\mathrm{f}}$ reactants(1); correct combination of values i.e. -980-(-1014)(1); ecf on above answer with sign ( +34 scores all 4) ecf on above |  |  |  |  | 4 |
| 3 b ii | Any four of the following five: <br> Mass/weight of ammonium bicarbonate(1); Ignore references to mass after reaction <br> Vol./mass of $\mathrm{HCl}(1) \mathrm{NOT}$ volume of reactants; Concentration of $\mathrm{HCl}(1)$; Starting temperature(1); finishing temps(1); NB (temp change/ $\Delta T$ scores two mass of reactants on its own = 1 mark; temp increase -1 mark only |  |  |  |  | 4 |
| 3 b iii | Entropies increase from solids to gases(1) ; ORA <br> disorder/no. of ways of arranging/randomness increase in same way(1)AW ignore nature of particle, except electron (0) <br> More moles/molecules/ of product (1); more products OK <br> gases/liquids from solids(1) |  |  |  |  | 4 |
| 3 ci | $4 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$ <br> correct balanced equation allow multiples etc(1); states(1) |  |  |  |  | 2 |
| 3 c ii | ```Catalyst/increases conductivity/absorb energy/moderates, AW/inc surface area/ reduces rate!(1)``` |  |  |  |  | 1 |
|  |  |  |  |  |  | 19 |


| Mark Scheme Page 4 of 4 |  | Unit Code $2850$ | Session Jan | Year <br> 2006 |  | rsion <br> final |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 a | $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n+2}$ or ' $\mathrm{x}^{\prime}$ |  |  |  |  | 1 |
| 4 a ii | Easier to store/transport/space needed reduced/handle/denser AW(1) |  |  |  |  | 1 |
| 4 bi | Any skeletal formula(more than three C) (1);Dots or blobs CON this mark  <br> butane  <br> both correct (1) methylpropane (1);allow 2-methylpropane (allow slight mis-spellings e.g. methyl) |  |  |  |  | 3 |
| 4 b ii | (structural) isomers(1) NOT isomerism |  |  |  |  | 1 |
| 4 ci | $5\left(\mathrm{dm}^{3}\right)$ oxygen(1); ecf $5 \times 100 / 20($ or $5 \times 5)=25\left(\mathrm{dm}^{3}\right)(1) 25=2$ marks |  |  |  |  | 2 |
| 4 c ii | Volume of a gas depends on temp/ pressure; AW (1) |  |  |  |  | 1 |
| 4 c iii | CO - toxic/poisonous/photochemical smog(1); NOT harmful/health hazard/acid rain/greenhouse |  |  |  |  | 1 |
| 4 c iv | Inefficient/waste of petrol/(photochemical)smog(unless in previous answer)/irritant/asthma/greenhouse gas/global warming/produces ozone/ any specific hydrocarbon e.g. benzene carcinogenic(1); |  |  |  |  | 1 |
| 4 c v | Bonds broken, energy in/endothermic(1); formed, energy out/exo(1); more out than in/more exo than endothermic(1) AW (independent) |  |  |  |  | 3 |
| 4 d | Small(er) molecules/chains (ignore references to branched)autogas/ petrol has $\mathrm{C}_{5}-\mathrm{C}_{7}$ hydrocarbons(1); <br> less/reduces/ tendency to autoignite/knock/ pre-ignite(1);NOT stops avoids damage to engine(1); <br> higher compression ratio/ power/efficiency possible (1) |  |  |  |  | 4 |
| 4 ei | 1000/44 (1); 1000/44 x 2220 (1) ; ecf for correct answer (between 50,390 and 51,160 depending on rounding)(1) |  |  |  |  | 3 |
| 4 e ii | Low (er) $M_{\mathrm{r}} /$ small(er) molecules(1)more moles/molecules(per kg) (1)ORA |  |  |  |  | 2 |
|  | Total |  |  |  |  | 23 |

