

Subject: CHEMISTRY (SALTERS) Code: 2850 Chemistry for Life

Session: Jan Year: 2006

Mark Scheme - FINAL

paper set date: 11/01/06

MAXIMUM MARK	75

Subject officer: Steven Evans

annotations and conventions used in the	= alternative and acceptable answers for the same marking point = separates marking points NOT = answers which are not worthy of credit = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument t
---	---

CHECKED BY	APPROVED (Tick or initials or signature)	DATE

ADVICE TO EXAMINERS ON THE ANNOTATION OF SCRIPTS

- 1. Please ensure that you use the **final** version of the Mark Scheme. You are advised to destroy all draft versions.
- 2. Please mark all post-standardisation scripts in red ink. A tick (3) should be used for each answer judged worthy of a mark. Ticks should be placed as close as possible to the point in the answer where the mark has been awarded. The number of ticks should be the same as the number of marks awarded. If two (or more) responses are required for one mark, use only one tick. Half marks $(\frac{1}{2})$ should never be used.
- 3. The following annotations may be used when marking. No comments should be written on scripts unless they relate directly to the mark scheme. Remember that scripts may be returned to Centres.

x = incorrect response (errors may also be underlined)

^ = omission mark

bod = benefit of the doubt (where professional judgement has been used)

ecf = error carried forward (in consequential marking)

con = contradiction (in cases where candidates contradict themselves in the same response)

sf = error in the number of significant figures

- 4. The marks awarded for each <u>part</u> question should be indicated in the margin provided on the right hand side of the page. The mark <u>total</u> for each question should be ringed at the end of the question, on the right hand side. These totals should be added up to give the final total on the front of the paper.
- 5. In cases where candidates are required to give a specific number of answers, (e.g. 'give three reasons'), mark the first answer(s) given up to the total number required. Strike through the remainder. In specific cases where this rule cannot be applied, the exact procedure to be used is given in the mark scheme.
- 6. Correct answers to calculations should gain full credit even if no working is shown, unless otherwise indicated in the mark scheme. (An instruction on the paper to 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)
- 7. Strike through all blank spaces and/or pages in order to give a clear indication that the whole of the script has been considered.
- 8. An element of professional judgement is required in the marking of any written paper, and candidates may not use the exact words that appear in the mark scheme. If the science is correct <u>and</u> answers the question, then the mark(s) should normally be credited. If you are in doubt about the validity of any answer, contact your Team Leader/Principal Examiner for guidance.

Mark	Scheme	Unit Code	Session	Year	Ver	sion
Page 1	of 4	2850	Jan	2006	fir	nal
1 a i	Similarity: Same	e no./amount/of protons	s/electrons/at	omic number	/	2
	(NOT A _r or same	e atomic charge)				
	· ·	erent no./amount/ of ne nic mass/one (more) neu	•	ent mass		
	(use of 'it' or 'the	y' is fine)				
	(or specific numb	ers e.g. both have one pr	roton- zero an	d one neutror	ns)	
1 a ii	$2^{2}_{1}H \rightarrow {}^{4}_{2}He \text{ corr}$	ect/consistent symbol(1)	top and botto	om add up(1),	;	2
	NB other possibi	lities, see example below	, but must sho	w fusion		
	$eg_2^3 He + {}_0^1 n sco$	res 2 must be <u>correct sym</u>	<u>ıbols</u> e.g. not I	ΗE		
1 a iii	(Light) nuclei (1)	(fuse/join/come togethe	er)(1); NOT ato	oms		2
	to form a <u>heavie</u>	<u>r</u> nucleus/atom/element	or larger <u>nuc</u>	leus(1)		
	any reference to	oonding is a CON				
1bi	Like/positive cha	arges/protons(1)				2
	(ignore reference	s to ions unless neg -CO	N); repel(1)			
1 b ii	High/extreme pr	ressure/gravity/density((1); Not - lots	of pressure		2
		mp/extreme heat/energ) NOT intense tempera		high temp a	nd	
1 c i	H ₂ (with or witho	ut proton or mass numb	er)(1); D/ ${}_{1}^{2}H$	(1); <u>or in wor</u>	<u>ls</u>	3
	eg hydrogen wit	n an extra neutron symbo	ols to right OK			
	NB a cation show	vn(1); - give this mark if o	cation shown i	n c i or cii(1);		
1 c ii	For peak at 3- HI	D/T (1); for peak at 4 – D	₂ /HT (1)			2
	Allow one mark	max. for reference to pos	sible existence	e of an		
	(heavier) isotope	of (hydrogen) NB $^{^4}_{_1}H$ i	s a CON			
	NOT contaminat	ion				
1 c iii	(relative) abunda concentration N	nce/amount(of that isoto OT intensity	ope)/proporti	on AW NOT		1
						16

Mark	Scheme	Unit Code	Session	Year	V	ersion
Page 2 of 4		2850 Jan		2006	FINAL	
2 a	s aq(1) both o	orrect			1	1
2 b	Any of: Reac	tivity/ease of ion formation/	thermal stabi	lity of carbon	ates	1
	base strength	of oxides/hydroxides				
2 c i	[Mg] ²⁺ 2[Cl] charges both correct(1); no electron	s around Mg		4
	(allow 8) (1);	(NB covalent structure – zer	ro)			
	eight, with on	ne different around Cl(1); 2C	Cl-ions(1); eith	er separate or	x2	
2 c ii	Acid-base/al	kali/neutralization/exother	mic(1)			1
2 d	Delocalized/	'sea'/free electrons(1); can m	nove/mobile(î	1);		2
2e	Mark the pro	Mark the <u>process</u> (in any order)				
	i.e. divide by	7 100(1); multiply by 1000(1);	(x10 gets both	n these marks)	
	divide by 24(1); sig figs(mark separately)	(1); <u>0.054 scor</u>	es all four		
	NB CON wro	ong figure at start – looking f	or digits 13 (se	ome using 1.0))	
2f	3000 - 3200 (1)			1		
2g	Graph A(1);					3
	Any two from	n the following three:				
	successive IE's get bigger/higher/harder to remove electrons/ AW(1);					
	big jump in/so much energy needed on electron 3 removed/Group 2 elements have two outer shell electrons (easier to remove)(1);					
	Hard(er) to remove electron from inner shell/(energy) level					
	/nearer nucleus(1)					
	Answer D could get first of above points only i.e. MAX 1 mark					
	Answers B or	C - zero				
						17

Mark Scheme Unit Code Session Year Ver		Ver	sion			
Page 3 of 4	1	2850	Jan	2006	fi	nal
Question	Expected Answers					Marks
3 a i	Reactants lab	abel to left of products(1); Reactants label below products(1);				3
	single headed	d 'vertical' arrow going up, la	abelled in wor	ds or using Δ	Н (1)	
	ecf for produ	cts below reactants				
3 a ii	Endothermic	(1);				1
3 b i	$\sum \Delta H_f produc$	ts(1); $\sum \Delta H_f$ reactants(1);				4
	correct comb	ination of values i.e980 - (-	1014)(1); ecf o	n above		
	answer with	sign (+34 scores all 4) ecf on	above			
3 b ii	Any four of t	he following five:				4
	Mass/weight of ammonium bicarbonate(1); Ignore references to mass after reaction					
	Vol./mass of HCl (1) NOT volume of reactants; Concentration of HCl(1);					
	Starting temperature(1); finishing temps(1); NB(temp change/ ΔT scores two					
	mass of react	ants on its own = 1 mark; ten	np increase – î	l mark only		
3 b iii	Entropies inc	rease from solids to gases(1)	; ORA			4
	disorder/no. of ways of arranging/randomness increase in same way(1)AW					
	ignore nature of particle, except electron (0)					
	More moles/	molecules/ of product (1); m	nore products	OK		
	gases/liquid	s from solids(1)				
3 c i	$4Fe(s) + 3O_2(g) \rightarrow 2Fe_2O_3(s)$				2	
	correct balan	ced equation allow multiples	s etc(1); states(1)		
3 c ii	Catalyst/inco	reases conductivity/absorb e	nergy/moder	ates, AW/inc	2	1
	reduces rate!	(1)				
						19

Mark Scheme Page 4 of 4		Unit Code	Session	Year	Version	
		2850 Jar		2006	final	
4 a i	C_nH_{2n+2} or ':	· · · · · · · · · · · · · · · · · · ·			1	
4 a ii	Easier to stor	re/transport/space needed r	educed/handl	e/denser AW	V(1) 1	
4 b i	Any skeletal	formula(more than three C)	(1);Dots or blo	bs CON this r	mark 3	
	butane	methylpropar	both corrected both corrected by the both corrected by the both both both both both both both both	,	ne	
	(allow slight mis-spellings e.g	g. methyl)			
4 b ii	(structural) is	somers(1) NOT isomerism	<u> </u>		1	
4 c i	5(dm³)oxyge	en(1); ecf 5 x 100/20 (or 5 x 5)	$= 25(dm^3) (1)$	25 = 2 marks	2	
4 c ii	Volume of a	gas depends on temp/pressi	ure; AW (1)		1	
4 c iii	CO – toxic/poisonous/photochemical smog(1); NOT harmful/health hazard/acid rain/greenhouse			1		
4 c iv	Inefficient/waste of petrol/(photochemical)smog(unless in previous answer)/irritant/asthma/greenhouse gas/global warming/produces ozone/any specific hydrocarbon e.g. benzene carcinogenic(1);			1 s		
4 c v	Bonds broke	n, energy in/endothermic(1)	; formed, ener	gy out/exo(1)	; 3	
	more out tha	nn in/more exo than endothe	ermic(1) AW (i	ndependent)		
4 d Small(er)		lecules/chains (ignore refere	ences to branch	ned)autogas/	4	
	petrol has C _{5 -} C ₇ hydrocarbons(1);					
	less/reduces/ tendency to autoignite/knock/pre-ignite(1);NOT stops					
	avoids dama	avoids damage to engine(1);				
	higher comp	ression ratio/power/efficier	acy possible (1))		
4 e i	1000/44 (1);	1000/44 x 2220 (1) ; ecf for co	orrect answer		3	
	(between 50)	.390 and 51,160 depending o	n rounding)(1)	;		
4 e ii	Low(er) M _r /	small(er) molecules(1)more i	moles/molecu	les(per kg) (1)	ORA 2	
				To	otal 23	