Mark Scheme 2850 June 2005

Mark Scheme 2850 June 2005

Abbreviations, annotations and conventions used in the Mark Scheme Mark Scheme		/ = alternative and acceptable answers for the same marking point; ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument Unit Code Session Year Version 2850 Jun 2005 TL				
						Version TL
1ai	Protons = 82(1); Neut	rons = 124(1); Electro		·	
1 a ii	234 and 4 top	line (1);	90 and 2 bottom (1);	(⁴ ₂)α /He ⁽²⁺⁾ (1) <u>N</u>	No ecf. Not α ²⁺	3
1 a iii	for amount/ co	ount rate	to decay(1) but NOT to drop by half (from ys/half the atoms dec decay/half mass of o	starting point)/ ay/half radiation e	emitted/	2
1 a iv	β/beta(1) con	rect sym	nbol(with 0 and -1) Oh	K but wrong way r	ound CON	1
1 b 1 c i	/U:Pb ratio gre	ater/ (1) cay has	final lead isotope, de land that loss of a control on as not been going on as lockwise from – samp	laughter product s s long as it really h	seems to suggenas.)	
			magnetic field		ŕ	
1 c ii	Reduce/weake	n/lesser	ned/decreased (AW)	field		1
1 d	Formula = UC $U_2O \text{ can score}$ $(UrO_2 = 2.)$	D ₂ (1) NE <u>two</u> if ra) (= 0.37); moles of 0 3 UO ₂ on its own 3 m atio clearly shown to be that follows from we	arks. oe upside down		3
					Question 1	total 19

Question	Expected answers 200 x 4.2 x 20(= 16800 J)(1);=16.8/17 kJ(1)(second mark for correct conversion to kJ)		
2 a i			
	Ignore signs		
2 a ii	1.2/12 (1) (= 0.1 mole); ecf 0.1 x 394(=39.4) (1)	3	
	Ecf 39 (1) mark sig figs independently Ignore sign 39.4 scores 2		
2 a iii	17/39 x 100 = (44)(43.6)% or 16.8/39(39.4) x 100 = 43(42.6)(1) ignore sig figs		
	(Marking process i.e. actual/theoretical x 100) but correct answer		
	needed from candidate values.		
2 b	Nitrogen(& O ₂) from <u>air</u> /fuel/coal(1); react <u>with O₂</u>		
	/combust/oxidized/bond with O ₂ (1)		
	(ignore refs. to incomplete combustion)		
2 c i	A = Unbranched alkane; B = unbranched alkene;		
	C = cycloalkane; D = branched alkane (4 x 1)		
2 c ii	Skeletal (1)		
2 c iii	Low/reduced tendency. NOT no/doesn't/prevents/ autoignit(e)ion (1);		
	to autoignite/pre-ignite/knock (1)		
	Can get max one mark if talk in terms of composition		
	(more branched/shorter molecules)		
2 d i	Benzene(1)	1	
2 d ii	2-methylpentane(1)	1	
2 d iii	Hydrogen/H ₂ (not "H") (1)	1	
	Total question 2 = 18		

3 a i	$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$ LHS(1); RHS(1); appropriate states (1)	3	
3 b i	Lime water/Ca(OH) ₂ /suitable indicator (e.g. bicarbonate/Universal Indicator/Methyl Orange) (1)		
3 b ii	Goes cloudy/milky/white/ precipitate/appropriate indicator change (1)	1	
	NOT bubbles/murky		
3 b iii	Idea of fair test (e.g. same amount/mass of carbonate/heating conditions (1);		
	MgCO ₃ /it causes lime water/indicator to change quicker/		
	more gas in a given time/bubbles faster (1) ORA		
	must be an input variable for fair test		
3 c i	Slaked lime more soluble/leached off more quickly (ora) (1)	1	
3 c ii	Basic/alkaline/accepts H ⁺ /pH > 7/contains OH ⁻ /hydroxide <u>ions</u> NOT OH without – charge. (1)		
3 c iii	$Ca(OH)_2(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + 2H_2O(l)$ species(2 x 1);	3	
	balancing(independent)(1)		
3 d	2	1	
3 e i	$Ca(g) \rightarrow Ca^{\dagger}(g) + e^{-}$ (1 for correct ionisation);	3	
	$Ca^{+}(g) \rightarrow Ca^{2+}(g) + e^{-}$ (1 for correct ionisation); gaseous (in both) ecf (1)		
	Must be e⁻ but ignore 0 and -1 if correct way round.		
	Use of wrong elemental (e.g. 'X') symbol loses first mark, but then ecf		
3 e ii	Ionization enthalpies decrease down group/ease of ion formation increases(1)	6	
	More reactive down the group (1);		
	electrons held less tightly/lost more readily/less energy to remove (1);		
	more energy/electron shells/outer electrons further out (AW)(1);		
	attraction to nucleus /protons(AW) (1);	en e	
	more shielding (from inner shells) (1) ORA		
	Total question 3 = 22		

Question	Expected Answers	Marks
4ai	Full structural (1) must show all bonds	1
4 a ii	C ₃ H ₈ O ₂ any order (1) NOT discrete OH groups	
4 a iii	Greater/increases (1);	2
	more ways to arrange molecules/particles/increased disorder/	
	more random when mixed (1) NOT more molecules/particles	
4 b (i)	Speeds up reaction (1); NOT alters	3
	By offering an alternative pathway/lower E_A /catalyst unchanged(1);	
	Heterogeneous – in different phases/states (1);	
4 b ii	3	1
4 b (iii)	Ether/alkoxy (1)	1
4 b iv	109° (+/_ 2) (1);	3
	Then 2 out of 3 from	
	Four electron regions/pairs of electrons (1) NOT bonds	
	try to get as far away as possible /achieve lowest energy/minimize repulsion (1); NOT repel as much as possible.	
	results in a tetrahedral arrangement (1); Diagram could score this point.	
4 c i	Liquid (1)	1
4 c ii	-109 scores three;	
	+109 scores two with correct working;	
	109 scores two if working shows minus sign has been left off but only one	
	if working would lead to a plus;	
	any number other than 109 can score max 1 if sign follows from working	
	Total question 4 = 16	

(Paper total 75)