

Mark Scheme 2854 January 2005

Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same marking point; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording
	ora = or reverse argument

1 a i	carbon (1); hydrogen (1)	2
1aii	CH ₂ OOCR	2
	CHOOCR	
	CH ₂ OOCR	
	three OH groups reacted (1)	}
	ester groups correct (1)	
1 a iii	permanent dipole-permanent dipole (2); "dipole"/single "permanent dipole scores (1)	2
1 a iv	conc. sulphuric acid (1); heat/reflux (if first mark awarded) (1) (sulphuric acid + reflux scores 1)	2
1 b i	unsaturated/C=C double bonds	1
1 b ii	oxidative AW(1); cross-linking (1)	2
1ci	4 from hydrogen bond formed between H and O; ∂+ on H and, ∂ on O/attract; linear O - H - O link; ∂ on O due to high electronegativity / difference in electronegativity between O and H; H-bond formed through lone pair on O; polarity of O-H bond in water or glycerol	4
1 c ii	(water-soluble) many/strong (1); hydrogen bonds formed with water (1) (high boiling) hydrogen bond between molecules (1); lot of energy needed to separate molecules / overcome / break H-bonds(1)	4
1 d i	propene	1
1 d ii	crude oil / natural gas	1
1 d iii	substitution	1

Xaggc caeco

1 d iv	NaOH	1
1 d v	CH ₂ OH CH ₂ OH CHCI or CHOH CH ₂ OH CH ₂ Ci one Cl or OH on adjacent carbon atoms(1) OH group on remaining carbon atom (if first mark given) (1)	2
1 d vi	Mr glycerol = 92 and Mr propene = 42 (1) amount glycerol = 2/92 (= 0.0217 mol) and amount propene = 30/42 (= 0.714 mol) (stated or implied) / $\frac{42}{92} \times \frac{2}{30}$ (1) (allow ecf) % = 0.0217 x 100/0.714 = 3% / = 0.03 x 100 = 3% (1) (allow ecf)	3

2 f	molecule has conjugated system/alternate double bonds; and 4 from: these allow delocalisation;	5
	energy level above ground state is closer;	
	<u>electron</u> absorbs energy when moves up / <u>electron</u> moves to a higher energy level / <u>electron</u> becomes excited;	
	(Δ)E = hv; (Δ)E / energy difference (allow frequency) corresponds to absorption is in the visible region;	
	(Maximum of 2 marks if emission is discussed or described)	1
	QWC 2 sentences, correct grammar, punctuation, spelling (1 error allowed)	

 3 а	Li ₂ O; BeO (1) for element; (1) for formula if element correct	2
3 b i	$K_a = [H^+] [HCO_3^-]/[CO_2]$ (1) for top or bottom correct or wrong way up; [2] completely correct	3
	Units mol dm ⁻³ (1)	<u> </u>
3 b ii	$[H^{+}] = \sqrt{K \times [CO_{2}]}$ (1); = 2.32 x 10 ⁻⁶ (mol dm ⁻³) (1); pH = 5.6	3
3ci	5H ₂ O (1); (I) (1)	2
3 cii	$[H^{+}] = 10^{-6} (1); K_c = (9 \times 10^{11})^2 / (10^{-6})^2 (allow 10^{-20} / 10^{-36}) (1); = 8.1 \times 10^{15} (allow 1 \times 10^{16} \text{ if } 10^{-20} / 10^{-36} \text{ awarded previous mark}) (1)$	3
3 c iii	$[AI^{3+}] = \sqrt{K \times [H^{+}]^{6}} (1); = \sqrt{1 \times 10^{-8}} (1); = 1 \times 10^{-4} (1)$	3
3 d i	electrons in outer shell (1); lost (1); to give full shell/stable configuration (1)	6
	same number/arrangement of electrons (1)	
	more protons Na to Al(1); attract electrons more/ pull in more tightly (1)	2
	QWC [2] 3 sentences, logical two italicised phrases. (1) 2 sentences, logical one italicised phrase	
3 d ii	2 from highest charge (1); smallest radius / ion (1) "highest charge density" scores both marks (high charge, small ion scores 1)	2
	attracts more water molecules (1)	

Oxf is a Reg Reg Reg OGF

OCF Hea Tele Fac:

© **O**(

4 a	$2NO + O_2 \rightarrow 2NO_2$	1
4 b	car engines/ lightning/power stations	1
4 c	+2 +2 +4 (1) each. Max 2 if plus signs after numbers	3
4 di	amount NO ₂ = $1(000)/46(= 0.00217)$; mass HNO ₃ = $0.0217 \times 63 = 1.4 \text{ kg}$	3
	or $\frac{63}{46}$ x 1(000) = 1.4 kg	
	Mr correct (1); calculation (1); 2 sig figs mark separately if some working shown(1)	
4 d ii	Advantage: fertilizer / increases nitrogen content (1). Disadvantage: consequence of being acid (1)	2
4 e	ionic (1); plus two from: solid (at room temperature) (1); crystalline (1) white (1); soluble in water (1)	3
	solution conducts/solid does not conduct (1)	
4 f i	(negative) fewer molecules on right	1
4 f ii	ΔS_{surr} positive (1); less positive / smaller at high temps (1); ΔS_{tot} less positive at high temps (1)	3
4 g i	larger	1
4 g ii	Rate larger (1); but [N ₂ O ₂] lower at higher T (1); second effect outweighs first (1)	3
		21

	benzene	1
5 a ii 5 a ii		1
5 b	absorb (1); <u>uv</u> light/ <u>uv</u> radiation (1)	2
5 c	Friedel (1); Crafts (1)	2
5 d	3 from: (further) polarises (accept breaks) C–Cl bond; to create electrophile; and AlCl ₄ ⁻ ; electrophile / C ₆ H ₅ CO ⁺ attacks benzene, liberating a proton / H ⁺	3
5 e i	AlCl ₃ + 3H ₂ O →Al(OH) ₃ + 3HCl/ 2AlCl ₃ + 3H ₂ O →Al ₂ O ₃ + 6HCl (1) for LHS; (1) for RHS; (1) for correct balancing provided one other mark scored	3
5 e ii	two marks for any correct pair (mark for pollutant can be scored alone but NOT effect) aluminium; forms toxic waste; HCl; toxic / acid aluminium; wasted benzene; toxic / carcinogenic	4
5 f i	2 pairs from: 1450-1650 (cm ⁻¹) (1); C-C bonds in arenes (1);, 1720–1725 (cm ⁻¹) (1); C=O (1); , 3000 – 3100 (cm ⁻¹) (1); C-H (1);	4
5 f ii	B A A B C B B all ten protons labelled in some way (1); correct letters (A,B,C) in any order (1)	2
	correct letters on one ring only scores (1)	22

Oxf is a Reg Reg OCI

OCI Hea Heac Fac: