

OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced Subsidiary GCE

CHEMISTRY (SALTERS)

2851

Minerals to Medicines

Wednesday

4 JUNE 2003

Morning

1 hour 30 minutes

Candidates answer on the question paper.
Additional materials:
Data Sheet for Chemistry (Salters)
Scientific calculator

Candidate Name		Centre Number	Candidate Number

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use a scientific calculator.
- You may use the Data Sheet for Chemistry (Salters).
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE		
Qu.	Max.	Mark
1	14	
2	27	
. 3	21	
4	28	
TOTAL	90	

Answer all the questions.

1 Poly(ethene) is made from ethene by an addition polymerisation reaction. The equation for this reaction is given below.

(a) The polymer *Perspex* is made from methyl 2-methylpropenoate in an addition polymerisation reaction similar to that shown above for the formation of poly(ethene).

methyl 2-methylpropenoate

(i)	Which functional group in the molecule enables methyl 2-methylpropenoate undergo an addition reaction?	to
		[1]
(ii)	Name another functional group present in methyl 2-methylpropenoate.	
		[1]
(iii)	In the brackets below, draw the repeating unit for Perspex.	

[1]

(b)	ln '	this question, one mark is available for the quality of written communication.
	Pe	rspex is less flexible than poly(ethene). Explain, in terms of the structure of the polymer ains and the intermolecular forces between the polymer chains, why this is so.
	••••	
	••••	
	•	[4]
		Quality of Written Communication [1]
(c)	(i)	Draw the full structural formula of the product formed when bromine reacts with ethene .
		[2]
(ii)	In this reaction, bromine acts as an electrophile. What do you understand by the term <i>electrophile</i> ?
		[2]
(ii	i)	Explain how bromine acts as an electrophile when it reacts with ethene.
		[2]
		[Total: 14]

2 In the early years of the nineteenth century, chemists isolated salicin from willow bark.

(a) (i) Circle in the list below the **type** of alcohol group present in salicin.

	primary	secondary	tertiary	[1]
(ii)	Explain your choice.			
				[1]

(b) Hydrolysis of salicin leads to the formation of two products. One is glucose. The other is shown below and is called salicyl alcohol.

salicyl alcohol

(i) Thin layer chromatography can be used to show that the hydrolysis mixture contains **two** products, one of which is salicyl alcohol. With the aid of labelled diagrams, describe how you would carry this out.

	(ii)	Give the reagent used in a chemical test to show that salicyl alcohol contains a phenol group. What would you expect to see?
		reagent added
		observation[2]
(c)	Sal	icyl alcohol is easily oxidised to salicylic acid.
		ОН
		salicylic acid
		cylic acid contains a carboxylic acid group. Draw the full structural formula of a poxylic acid group.
		[1]
(d)	(i)	The relative molecular mass of salicylic acid is 138. What would you look for in a mass spectrum of salicylic acid to confirm this is true?
		[1]
	(ii)	The mass spectrum of salicylic acid, $C_7H_6O_3$, contains a peak at a mass of 120. What fragment is lost from the molecular ion to produce this peak?
		[1]
	(iii)	What is the molecular formula of the ion responsible for the peak at a mass of 120?
		[1]
(e)		cylic acid is soluble in warm water. The concentration of a solution can be ermined by titration with aqueous sodium hydroxide.
	(i)	What name is given to the type of reaction which occurs in this titration?
		[1]
	(ii)	What piece of apparatus should a student use to measure out 25.0 cm ³ of aqueous salicylic acid?

	(111)	salicylic acid solution.
		Calculate the number of moles of sodium hydroxide added to the salicylic acid.
		anower [0]
		answer mol [2]
	(iv)	Two moles of sodium hydroxide react with one mole salicylic acid. Use your answer from (iii) to calculate the number of moles of salicylic acid in 25.0 cm ³ of salicylic acid solution.
		answer mol [1]
	(v)	Calculate the concentration of the salicylic acid solution.
		answer mol dm ⁻³ [2]
(f)	List	all of the types of intermolecular force present between salicylic acid molecules.
		∠ COOH
		ОН
		salicylic acid
	•••••	
		······································
		[3]
-		

(g) The carboxylic acid group, — COOH, in salicylic acid reacts with water reversibly to produce an acidic solution according to the equation below.

 $-COOH(aq) + H₂O(I) \rightleftharpoons -COO^{-}(aq) + H₃O^{+}(aq)$

(i) Explain why water is acting as a base in this reaction.

[1]

(ii) A solution containing — COO⁻ ions is added to the acidic solution. Use the equation above and Le Chatelier's principle to explain what would happen to the concentration of the H₃O⁺ ions.

[Total: 27]

3	son	ne p effec	ants have been disco	vered which take up la used commercially to	such as nickel from the soil. Rec rge amounts of metals. These plant extract the metals from the ground	sare
	(a)	Su	ggest one advantage	of phytomining over co	onventional mining.	
			***************************************	••••••		
						[1]
	(b)	At į	oresent nickel is obtai ss of nickel sulphide, l	ned mainly from sulph	ide ores. One nickel ore contains 2	% by
			Ni, 59; S, 32]			
		(i)	Calculate the number	er of moles of nickel su	lphide present in 1000 kg of ore.	
				answ	er mol	[2]
		(ii)	How many moles of	nickel are present in th	nis amount of ore?	
				answ	ər mol	[1]
	(c)	In e	xtracting nickel from t		i, the ore is roasted in air. The equ	
		for t	his reaction is given b	elow.	, and one to reacted in all. The equ	adon
				$\mathrm{NiS}+\mathrm{O_2}\rightarrow\mathrm{Ni}$	+ SO ₂	
		(i)	In the table below, w One of them has bee	rite down the oxidation on done for you.	n state of each element in the equa	ition.
				oxid	ation state	
			element	reactants	products	
			S	-2		
			Ni			
	-		0			
						[4]
	((ii)	Using information from the reason for your cl	m the table, state an e noice.	ement which has been oxidised , g	iving
			element			
			reason			•••••
				·		[2]

(a)	cop	number of elements can be extracted by phytomining. They include cadmium, cobalt, pper, manganese, nickel, selenium, uranium and zinc.
	(i)	Name one of these elements that is not a d-block element.
		[1]
((ii)	Use your Periodic Table to help you complete the electron structure for nickel atoms:
		1s ² 2s ² 2p ⁶ 3s ² 3p ⁶
, ,	**	[2]
(e) ((i)	In phytomining, the dried plant material is burned to produce an ash which contains nickel. In this process, large quantities of carbon dioxide are released into the atmosphere. Explain why increasing the concentration of carbon dioxide in the atmosphere is an environmental hazard.
		[2]
(i	i)	In the long term , phytomining does not change the concentration of carbon dioxide in the atmosphere. Explain why.
• •		[2]
(f) Ir th	nfra ne a	red spectroscopy can be used to measure the concentration of carbon dioxide in the transfer of
(i)	What effect does this infrared radiation have on CO ₂ molecules?
		[2]
(ii) '	Why do molecules absorb infrared radiation at specific frequencies?
	•	[1]
(iii)) }	How would measuring the absorption at 2360 cm ⁻¹ indicate changes in CO ₂ concentration?
		[1]
		[Total: 21]

[2]

4 Halons are compounds related to CFCs, where one or more chlorine atoms are replaced by bromine. Freon 13B1 is a commercially produced halon once widely used in fire extinguishers.

Freon 13B1

- (a) Give the systematic chemical name for Freon 13B1.
- (b) (i) Freon 13B1 breaks down in the upper atmosphere more easily than the CFC shown below. Suggest an explanation for this.

broken homolytically.

Draw the structures of the products formed when the C—Br bond in Freon 13B1 is

(iii) What do you call the type of particles formed by homolytic fission?

(c)	In t	his question, one mark is available for the quality of written communication.
	We the	now realise that halons such as Freon 13B1 damage the ozone layer. Suggest how y do this. You do not need to write chemical equations.
	••••	
	•	
	••••	
		[4]
		Quality of Written Communication [1]
(d)	oce	ge quantities of bromomethane, CH ₃ Br, are released into the atmosphere from the ans. In the lower atmosphere, some bromomethane is hydrolysed by rain water, is an example of a nucleophilic substitution reaction.
	(i)	Give the name and formula of the organic product formed when CH ₃ Br is hydrolysed.
		name
		formula[2]
	(ii)	The nucleophile in this reaction is water. Use this reaction to explain how water acts as a nucleophile.
	š.	
		[3]

(e) (i) The enthalpy profile diagram below is for the reaction between CH₃Br and water. Insert the following labels in their correct places.

Trow does the enthalpy profile diagram show that the overall reaction is exothermic	(")
[1	
How would you show practically that the reaction is exothermic?	(iii)
[1	
of most reactions increase as the temperature rises.	(f) (i)

······································	

(ii)	Aqueous bromide ions are formed in this hydrolysis reaction. These ions can be detected by aqueous silver nitrate. A precipitate of silver bromide is formed.
	Write an ionic equation for formation of silver bromide. Include state symbols in the equation.
	[3]

[Total: 28]