Oxford Cambridge and RSA

GCE

Chemistry A

Unit F324: Rings, Polymers and Analysis
Advanced GCE

Mark Scheme for June 2016

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Abbreviations, annotations and conventions

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Question			AnswerStearic acid/octadecanoic acidANDSaturated (fat)	Mark	Guidance
1	(a)			1	ALLOW stearic acid AND no $\mathrm{C}=\mathrm{C}$ double bonds IGNORE comments about LDL and cholesterol DO NOT ALLOW stearic acid is a trans fatty acid
	(b)		$\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COOH}+\mathrm{NaOH} \rightarrow \mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COO}^{-} \mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O}$	1	ALLOW $\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COONa}$ IGNORE state symbols
	(c)		At least one ester link fully displayed in a triglyceride structure Correct triglyceride structure	2	 ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above for the rest of the structure
	(d)	(i)	M1 Correct structure of a mono unsaturated fatty acid with 18 C M2 Correct position of double bond (12) in a mono unsaturated fatty acid AND trans arrangement	2	Must be skeletal formula for M1 DO NOT ALLOW cis isomer for M2

Question		Answer	Mark	Guidance	
	(ii)	Each carbon atom in the double bond is attached to (two) different groups/atoms \checkmark	1	ALLOW Each carbon atom of the double bond is attached to a H atom DO NOT ALLOW functional group for group DO NOT ALLOW the carbon atoms are attached to different groups IGNORE two of the substituent groups are the same	
			Total	$\mathbf{7}$	

Question			Answer	Mark	Guidance
2	(a)	(i)	$\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{2}$ $\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH}$	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW acid chloride, $\mathrm{ClOC}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COCl}$
		(ii)	Type of condensation polymer Polyamide AND Use of condensation polymer Fibres in clothing	1	Both answers required for one mark ALLOW nylon IGNORE numbers IGNORE polypeptide DO NOT ALLOW kevlar ALLOW any common use for nylon e.g. fibre, clothing, rope, fishing net, bristles, brushes, bags, cable ties etc. DO NOT ALLOW distinctive uses associated with kevlar or other polymers e.g. bullet-proof vests, crash helmets, bottles, cups IGNORE plastic
	(b)	(i)	 Other organic compound $\mathrm{CH}_{3} \mathrm{COOH}$	2	ALLOW skeletal formula ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous IGNORE names

Question

Question	Answer	Mark	Guidance
	$\frac{\text { conditions for step } 2}{\text { alkaline/alkali }}$		ALLOW dilute NaOH or stated concentration IGNORE $\mathrm{NaOH} / \mathrm{KOH}$ (must be aqueous) If temperature stated must be below $10^{\circ} \mathrm{C}$ DO NOT ALLOW heat/boil/warm
	Total	17	

Question			Answer	Mark	Guidance
3	(a)		 Curly arrow from OH^{-}to $\mathrm{C}(\delta+)$ Dipole correct AND curly arrow from $\mathrm{C}=\mathrm{O}$ bond to $\mathrm{O}(\delta-)$	2	First curly arrow must come from either a lone pair on O or negative charge on O
	(b)		Measure distance moved by spot / distance moved by solvent Compare (R_{f}) value with data book values/known values Two amino acids have the same/similar R_{f} value OR similar adsorption OR move the same/similar distance	2 1	ALLOW attempt at calculation of R_{f} value using distances measured on the chromatogram IGNORE explanation of how chromatography works ALLOW One spot contains two amino acids ALLOW Two amino acids have not separated IGNORE relative solubility ALLOW two of the amino acids have similar structures
	(c)	(i)	The $\mathbf{p H}$ at which the amino acid exists as a zwitterion QWC: zwitterion spelled correctly in the correct context	1	DO NOT ALLOW PH/ph ALLOW zwitter ion

Question	Answer	Mark	Guidance
(ii)		1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous Two COO^{-}groups are required in the structure ALLOW - $\mathrm{COO}^{-} \mathrm{Na}^{+}$OR -COONa ALLOW delocalised carboxylate ALLOW DO NOT ALLOW -COO-Na OR -O-Na (covalent bond)
(iii)	M1 structure M2 correct structure has three chiral centres	2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW tripeptide with the 3 amino acids in any order ALLOW cyclic tripeptide Isoleucine has two chiral centres, aspartic acid has one chiral centre and glycine has none. ALL three correct for one mark ALLOW chiral centres correctly identified if the three amino acids are part of a polypeptide chain
	Total	9	

Question			Answer	Mark	Guidance
4	(a)		2(-)hydroxypropanoic acid \checkmark	1	DO NOT ALLOW 2-hydroxylpropanoic acid IGNORE other dashes, commas and spaces
	(b)		Lactic acid synthesised in the laboratory will contain optical isomers/two optical isomers OR Lactic acid produced by bacteria will be present as one optical isomer	1	ALLOW enantiomer for optical isomer ALLOW racemic mixture IGNORE stereoisomer
	(c)			1	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous
	(d)	(i)		1	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous DO NOT ALLOW more than one repeat unit DO NOT ALLOW if structure has no end bonds IGNORE brackets unless they are used to pick out the repeat unit from a polymer chain IGNORE n

Question			Answer			Mark	Guidance One mark for each correct row ALLOW δ values as a range or a value within the specified range. ALLOW δ values $+/-0.2 \mathrm{ppm}$. ALLOW a response that implies a splitting into two for a doublet etc. ALLOW sextet/hextet/six (or more than 5) as alternative to multiplet Relative peak area $=\mathrm{CH}_{3} / 3 \mathrm{H}$ etc. penalise once
5	(a)	(i)	${ }^{1} \mathrm{H}$ NMR spec Chemical shift, 8/ppm$\|$$0.8-2.0$ $2.3-3.0$ $3.3-4.2$	m for 2-aminop Relative peak area 3 1	Splitting pattern doublet multiplet doublet	3	
		(ii)	M^{+}peak at 75 (peak 1) $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CH}_{2} \mathrm{OH}^{+} /$ $\frac{\text { Fragment peak at } 44}{\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{NH}_{2}\right)^{+} / \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~N}^{+}}$	$\mathrm{H}_{9} \mathrm{NO}^{+}$ 2)		2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous Positive charge is essential but ALLOW maximum of one mark if both formulae are correct AND neither species has a positive charge
5	(b)	(i)	Ethanolic ammonia OR ammonia/ NH_{3} AN	thanol	\checkmark	1	ALLOW ammonia in a sealed tube ALLOW dilute ethanolic ammonia/ NH_{3} IGNORE heat ALLOW alcohol for ethanol DO NOT ALLOW any reference to water or hydroxide ions
		(ii)	(compound D)			1	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous

Question		Answer	Mark	Guidance
(c)	(i)	Alcohol AND Amide/peptide	1	IGNORE phenol IGNORE hydroxyl/hydroxy IGNORE attempts to classify alcohol or amide as primary, secondary or tertiary DO NOT ALLOW hydroxide
	(ii)		2	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous ALLOW + on N or H i.e. ${ }^{+} \mathrm{NH}_{3}$ or $\mathrm{NH}_{3}{ }^{+}$ ALLOW $\mathrm{NH}_{3}{ }^{+} \mathrm{Cl}^{-}$
		Total	10	

Question		Answer	Mark	Guidance
6	(a)	Reducing agent NaBH_{4} / sodium tetrahydridoborate(III) / sodium borohydride Equation $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CHO}+2[\mathrm{H}] \rightarrow \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2} \mathrm{OH}$	2	ALLOW LiAlH_{4} / lithium tetrahydridoaluminate(III)/lithium aluminium hydride ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above ALLOW $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{CHO}+2[\mathrm{H}] \rightarrow \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{OH}$ ALLOW molecular formulae: $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}+2[\mathrm{H}] \rightarrow \mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$ DO NOT ALLOW -COH for aldehyde
	(b)	M1 Compound \mathbf{F} structure is a secondary alcohol with the formula $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{OH}$ M2 Compound $\mathbf{F}=\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{3}$ M3 Compound $\mathbf{G}=\mathrm{CH}_{3} \mathrm{COCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{3}$	7	ANNOTATE WITH TICKS AND CROSSES ETC. ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous IGNORE names if structures are given ALLOW 3-methylbutan-2-ol if structure not given ALLOW ECF from an incorrect secondary alcohol for M3 e.g. pentan-2-ol \rightarrow pentan-2-one e.g. pentan-3-ol \rightarrow pentan-3-one ALLOW (3-)methylbutanone if structure not given IGNORE any discussion of the reactions of compound \mathbf{G} with 2,4-dinitrophenylhydrazine and/or Tollens' reagent. ALLOW 3 SF up to calculator value correctly rounded

Questio	Answer	Mark	Guidance
	M4 $\mathrm{n}(\mathrm{NaOH})=(0.125 \times 22.8 / 1000)=0.00285(\mathrm{~mol})$ M5 $\mathrm{M}(\text { compound } \mathrm{H})=(0.211 / 0.00285=) 74(.0)\left(\mathrm{g} \mathrm{~mol}^{-1}\right)$ M6 Compound $\mathbf{H}=/ \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ M7 Compound $\mathbf{I}=$		IF $\mathrm{M}($ compound H$)=74$ award 2 marks $(\mathrm{M} 4+\mathrm{M} 5)$ ALLOW ECF from incorrect calculation of amount of NaOH ALLOW propanoic acid if structure not given ALLOW ECF from incorrect compound \mathbf{F} (alcohol) and/or incorrect compound \mathbf{H} (carboxylic acid) to form compound I (ester). Compounds F, G, H and I must be placed in the correct box or correctly labelled for M2. M3, M6 and M7
(c)	The structural isomer is:	1	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW 2,2-dimethylpropan-1-ol
	Total	10	

OCR (Oxford Cambridge and RSA Examinations)

1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

