Oxford Cambridge and RSA

GCE

Chemistry A

Unit F322: Chains, Energy and Resources
Advanced Subsidiary GCE

Mark Scheme for June 2016

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations

Annotation	Meaning
BP	Blank Page - this annotation must be used on all blank pages within an answer booklet (structured or unstructured) and on each page of an additional object where there is no candidate response.
BOD	Benefit of doubt given
CON	Contradiction
E	Incorrect response
ECF	Error carried forward
I	Ignore
NAQ	Not answered question
NBOD	Benefit of doubt not given
POT	Power of 10 error
A	Omission mark
RE	Rounding error
SF	Error in number of significant figures
\boldsymbol{S}	Correct response

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

The following questions should be marked using ALL appropriate annotations to show where marks have been awarded in the body of the text: 1(b)(iii),
2(c), 2(d), 2e(ii),
3(a)(i), 3(b)(ii), 3(c)(ii),
4(b), 4(c)(i), 4(c)(ii)
5(b), 5(e)
7(a), 7b(i), 7b(ii)
All questions where an ECF has been applied.

Checking additional pages
All the Additional Pages in the examination script must be checked to see if any candidates include any answers.
When you open question 1(a) you will see a view of page 24 one of the Additional Pages.
If the page is blank then, using the marking mode, annotate the page with the BP annotation
You may need to contact your Team Leader if you do not know how to do this.
Generic comments

ORGANIC STRUCTURES

For a 'structure' or 'structural formula',
ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)
For an alkyl group shown within a structure,
ALLOW bond drawn to C or H ,
e.g. ALLOW $\mathrm{CH}_{3}-, \mathrm{CH}_{2}-, \mathrm{C}_{3} \mathrm{H}_{7}$, etc

ALLOW vertical 'bond' to any part of an alkyl group
For an OH group shown within a structure,
DO NOT ALLOW formula with horizontal --HO OR OH -
ALLOW vertical 'bond' to any part of the OH group
For a CHO group shown within a structure,
DO NOT ALLOW COH

NAMES

Names including alkyl groups:
ALLOW alkanyl, e.g. ethanyl (i.e. IGNORE 'an')
DO NOT ALLOW alkol, e.g. ethol (ie 'an' is essential)
Names of esters:
Two words are expected, e.g. ethyl ethanoate
ALLOW one word, e.g. ethylethanoate
Names with multiple numbers and hyphens:
Use of 'e'
ALLOW superfluous 'e', e.g. propane-1-ol ('e' is kept if followed by consonant)
ALLOW absence of 'e', e.g. propan-1,2-diol ('e' is omitted if followed by vowel)
Hyphens separate name from numbers:
ALLOW absence of hyphens, e.g. propane 1,2 diol
Multiple locant numbers must be clearly separated:
ALLOW full stops: e.g. 1.2 OR spaces: 12
DO NOT ALLOW e.g. 12
Locant numbers in formula must be correct
DO NOT ALLOW propan-3-ol
Order of substituents should be alphabetical:
ALLOW any order (as long as unambiguous), e.g. 2-chloro-3-bromobutane

ABBREVIATIONS

van der Waal's forces
ALLOW vdw forces OR VDW forces (and any combination of upper and lower cases)

Question			Answer	Marks	Guidance
1	(a)		$\mathrm{C}_{7} \mathrm{H}_{12} \checkmark$	1	
1	(b)	(i)	Product from Br_{2} Product from $\mathbf{H}_{\mathbf{2}} / \mathbf{N i}$ Mixture of isomers from $\mathrm{H}_{2} \mathrm{O}$	4	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above IGNORE names WATCH for missed methyl stick ALLOW added H shown, i.e. ALLOW in either order
1	(b)	(ii)	Steam OR temperature $\geq 100^{\circ} \mathrm{C}$ acid (catalyst)	2	ALLOW $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ IGNORE pressure IGNORE High temperature / reflux ALLOW H ${ }^{+}$/ named mineral acid / $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}_{3} \mathrm{PO}_{4}$ DO NOT ALLOW 'weak acid' e.g. ethanoic acid

Question			Answer	Marks	Guidance
1	(b)	(iii)	Curly arrow from double bond to Br of $\mathrm{Br}-\mathrm{Br} \checkmark$ Correct dipole shown on $\mathrm{Br}-\mathrm{Br}$ AND curly arrow showing breaking of $\mathrm{Br}-\mathrm{Br}$ bond \checkmark Correct carbocation with + charge on C AND curly arrow from Br^{-}to C^{+}of carbocation OR Note: '+' and ‘-‘ are fine for charge (circles used for clarity)	3	ANNOTATE ANSWER WITH TICKS AND CROSSES Curly arrow must start from bond and go to correct atom DO NOT ALLOW any other partial charges e.g. shown on $\mathrm{C}=\mathrm{C}$ bond DO NOT ALLOW $\delta+$ on C of carbocation. IF C atoms are displayed IGNORE missing bonds to H atoms Curly arrow must come from a lone pair on Br^{-} OR from the negative sign of Br^{-}ion (then lone pair on Br^{-} ion does not need to be shown)
1	(b)	(iv)	electrophilic addition \checkmark	1	
			Total	11	

Question		Answer	Marks	Guidance	
$\mathbf{2}$	(a)		$\begin{array}{l}\text { (series of compounds with the) same functional group } \\ \text { OR same/similar chemical properties/reactions } \checkmark\end{array}$	$\mathbf{2}$	$\begin{array}{l}\text { IGNORE reference to physical properties } \\ \text { IGNORE same general formula }\end{array}$
each successive/subsequent member differs by $\mathrm{CH}_{2} \checkmark$					

Question			Answer	Marks	Guidance
2	(c)		Alcohols have hydrogen bonds (and van der Waals' forces) Hydrogen bonds are stronger than van der Waals' forces (in alkanes)	2	ANNOTATE ANSWER WITH TICKS AND CROSSES ALLOW reference to specific compounds e.g. comparing methane and methanol Second marking point requires BOTH types of intermolecular forces in response i.e comparison of hydrogen bonds AND van der Waals is essential DO NOT ALLOW the second mark for a comparison of van der Waals' and hydrogen bonds between alcohols and water ALLOW more energy required to break hydrogen bonds than van der Waals' forces ALLOW it is harder to overcome the hydrogen bonds than van der Waals' forces IGNORE more energy is needed to break bonds
2	(d)		2-methylpropan-1-ol has less surface (area of) contact OR fewer points of contact 2-methylpropan-1-ol has fewer/weaker van der Waals' forces OR less energy required to break van der Waals' forces in 2-methylpropan-1-ol \checkmark	2	ANNOTATE ANSWER WITH TICKS AND CROSSES Both answers need to be comparisons ALLOW ORA throughout Reference to just surface area / closeness of molecules is not sufficient IGNORE reference to H bonds IGNORE less energy is needed to break bonds
2	(e)	(i)	Elimination OR dehydration \checkmark	1	

Question			Answer	Marks	Guidance
2	(e)	(ii)	IF answer = 14.0 OR 14.1 g award 3 marks	3	ANNOTATE ANSWER WITH TICKS AND CROSSES
					ALLOW ECF at each stage
			actual		ALLOW 3 SF up to calculator value correctly rounded for intermediate values
			$n\left(\mathrm{C}_{5} \mathrm{H}_{8}\right) \text { produced }=\frac{5.00}{68.0}=0.0735(\mathrm{~mol}) \checkmark$		ALLOW expected mass $\mathrm{C}_{5} \mathrm{H}_{8}=5.00 \times \frac{100}{45.0}=11.111(\mathrm{~g})$
			theoretical $n\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{OH}\right)=n\left(\mathrm{C}_{5} \mathrm{H}_{8}\right)=0.0735 \times \frac{100}{45.0}=0.163(\mathrm{~mol})$		ALLOW Mass $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{OH}$ reacted $=0.0735 \times 86.0=6.321(\mathrm{~g})$
					$\text { ALLOW Mass of } \mathrm{C}_{5} \mathrm{H}_{9} \mathrm{OH} \text { used }=6.321 \times \frac{100}{45.0}=14.0 \text { OR } 14(\mathrm{~g})$
			Mass of $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{OH}=0.163 \times 86.0=14.0(\mathrm{~g})$ OR 14 g OR $14.1 \mathrm{~g} \checkmark$ (use of unrounded values in calculator throughout)		ALLOW 2 SF up to calculator value correctly rounded for mass of $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{OH}$
					Note: 2.84 OR 2.85 g would get 2 marks (use of 45.0/100 instead of 100/45.0) 13.76 OR 13.8 would get 2 marks (use of 0.16 for moles $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{OH}$)

Question			Answer	Marks	Guidance
2	(f)	(i)		1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above ALLOW equation with OH^{-}as reactant and Cl^{-}product e.g $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{Cl}+\mathrm{OH}^{-} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{OH}+\mathrm{Cl}^{-}$ IGNORE equations with $\mathrm{KOH} / \mathrm{H}_{2} \mathrm{O}$ as reactant (question states sodium hydroxide) IGNORE molecular formulae (question requires structures)

Question		Answer	Marks	Guidance
2	$\begin{array}{\|l\|l\|} \hline \text { (f) } & \text { (ii) } \end{array}$	 curly arrow from HO^{-}to carbon atom of $\mathrm{C}-\mathrm{Cl}$ bond \checkmark Dipole shown on $\mathrm{C}-\mathrm{Cl}$ bond, $\mathrm{C}^{\delta+}$ and $\mathrm{Cl}^{\delta-}$ AND curly arrow from $\mathrm{C}-\mathrm{Cl}$ bond to Cl atom \checkmark	2	Curly arrow must come from lone pair on O of $\mathrm{HO}^{-} \mathrm{OR} \mathrm{OH}^{-}$ OR from minus sign on O of HO^{-}ion (No need to show lone pair if curly arrow came from negative charge) NOTE: ALLOW mechanism involving ANY halogenoalkane as structures have been assessed in 2(f)(i) ALLOW $\mathrm{S}_{\mathrm{N}} 1$ mechanism: First mark Dipole shown on $\mathrm{C}-\mathrm{Cl}$ bond, $\mathrm{C}^{\delta+}$ and $\mathrm{Cl}^{\delta-}$ AND curly arrow from $\mathrm{C}-\mathrm{Cl}$ bond to Cl atom \checkmark Second mark Correct carbocation AND curly arrow from HO^{-}to carbocation :ÖH Note: ' + ' is fine for charge (circle used for clarity) Curly arrow must come from lone pair on O of $\mathrm{HO}^{-} \mathrm{OR} \mathrm{OH}^{-}$ OR from minus sign on O of HO^{-}ion (No need to show lone pair if curly arrow came from negative charge) \downarrow
		Total	15	

Question			Answer	Marks	Guidance
3	(a)	(i)	IF $\Delta \boldsymbol{H}_{\mathrm{r}}=\mathbf{- 3 4 7}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ award 4 marks IF $\Delta \boldsymbol{H}_{\mathrm{r}}=(+) 347$ (kJ mol$^{-1}$) award 3 marks (incorrect sign) Moles Amount, $n\left(\mathrm{CuSO}_{4}\right)$, calculated correctly $=0.0125(\mathrm{~mol})$ Energy q calculated correctly $=4336.75(\mathrm{~J})$ OR $4.33675(\mathrm{~kJ})$ Calculating ΔH correctly calculates ΔH in $\mathrm{kJ} \mathrm{mol}^{-1}$ to 3 or more sig figs \checkmark Rounding and Sign calculated value of ΔH rounded to 3 sig. fig. with minus sign	4	ANNOTATE ANSWER WITH TICKS AND CROSSES Note: $q=25.0 \times 4.18 \times 41.5$ ALLOW 3 SF up to calculator value of 4336.75 J IGNORE sign IGNORE working Note: from 4336.75 J and $0.0125 \mathrm{~mol} \Delta H=(-) 346.940 \mathrm{~kJ} \mathrm{~mol}^{-1}$ IGNORE sign at this intermediate stage ALLOW ECF from $n\left(\mathrm{CuSO}_{4}\right)$ and/or energy released Final answer must have correct sign and three sig figs Answer is still -347 from rounding of q to 4340 J
3	(a)	(ii)	Minimum mass $=0.0125 \times 24.3 \times 1.25=0.38(0) \mathrm{g} \checkmark$	1	ALLOW ECF for mass correctly rounded to 2 dp from incorrect moles of CuSO_{4} in 3(a)(i)

Question			Answer	Marks	Guidance
3	(b)	(i)	(enthalpy change that occurs) when one mole of a substance \checkmark completely combusts OR reacts fully with oxygen \checkmark $298 \mathrm{~K} / 25^{\circ} \mathrm{C}$ AND $1 \mathrm{~atm} / 100 \mathrm{kPa} / 101 \mathrm{kPa} / 10^{5} \mathrm{~Pa} / 1 \mathrm{bar} \checkmark$	3	ALLOW energy required OR energy released ALLOW one mole of a compound OR one mole of an element ALLOW combusts in excess oxygen ALLOW burns in excess oxygen Combusts in excess air is not sufficient IGNORE reference to concentration
3	(b)	(ii)	IF answer = - $281\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$, award 2 marks IF answer $=(+) 281\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$, award 1 mark Working for C AND H_{2} seen anywhere $$ Calculates ΔH_{c} correctly $-6406--6125=-281 \mathrm{~kJ} \mathrm{~mol}^{-1} \checkmark$	2	ANNOTATE ANSWER WITH TICKS AND CROSSES IF there is an alternative answer, check to see if there is any ECF credit possible Common incorrect answers are shown below Award 1 mark for 5445 (not used $\times 9$ and $\times 10$) 2871 (not used $\times 9$) 2293 (not used $\times 10$)
3	(c)	(i)	(Average enthalpy change) when one mole of bonds \checkmark of (gaseous covalent) bonds is broken \checkmark	2	IGNORE energy required OR energy released DO NOT ALLOW bonds formed IGNORE heterolytic/homolytic

Question			Answer	Marks	Guidance
3	(c)	(ii)	IF answer $=(+) 1062\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$, award 3 marks IF answer $=\mathbf{- 1 0 6 2}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$, award 2 marks (ΔH for bonds broken =) $2580\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ OR 1652 AND $928\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ $(\Delta H$ for bonds formed $=) 1308\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \checkmark$ (bond enthalpy CO = 2580-1308-210) $=(+) 1062\left(\mathrm{~kJ} \mathrm{~mol}^{-}\right.$ ${ }^{1}$) \checkmark	3	ANNOTATE ANSWER WITH TICKS AND CROSSES IGNORE sign IGNORE sign ALLOW ECF IGNORE rounding of 1062 to 1060 and credit 1062 from working Award 2 marks for $\begin{aligned} & \pm 1272 \text { (from } \pm(2580-1308)) \\ & \pm 1482 \text { (from } \pm(2580-1308+210)) \end{aligned}$
			Total	15	

Question			Answer	Marks	Guidance
4	(a)	(i)	Equilibrium (position) shifts to right AND turns paler (brown) Right-hand side has fewer (gaseous) moles/molecules OR left-hand side has more (gaseous) moles/molecules \checkmark	2	ALLOW turns colourless IGNORE initially goes darker (brown) Note: ALLOW suitable alternatives for 'to right', e.g.: towards products OR towards $\mathrm{N}_{2} \mathrm{O}_{4}$ OR in forward direction OR favours the right IGNORE responses in terms of rate
4	(a)	(ii)	Equilibrium (position) shifts to left AND turns darker/deeper (brown) (Forward) reaction is exothermic OR (forward) reaction gives out heat OR reverse reaction is endothermic OR reverse reaction takes in heat \checkmark	2	ALLOW turns brown Note: ALLOW suitable alternatives for 'to left', e.g.: towards reactants OR towards NO_{2} OR in reverse direction OR favours the left IGNORE comments about the 'exothermic side' or 'endothermic side' ALLOW 'equilibrium (position) shifts left AND in the endothermic direction' for second marking point IGNORE responses in terms of rate

	ues	Answer	Marks	Guidance
4	(b)	Addition of acid [H^{+}] OR H H^{+}increases AND equilibrium (position) shifts to right \checkmark Addition of alkali Alkali reacts with $\mathrm{H}^{+} \mathbf{O R}$ alkali removes H^{+} AND equilibrium (position) shifts to left	2	ANNOTATE ANSWER WITH TICKS AND CROSSES IGNORE amount of acid increases (in question) ALLOW (added) acid reacts with $\mathrm{CrO}_{4}{ }^{2-}$ Note: ALLOW suitable alternatives for 'to right', e.g.: towards products OR towards $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} / \mathrm{H}_{2} \mathrm{O}$ OR in forward direction OR favours the right ALLOW H ${ }^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$ ALLOW alkali reacts with (added) acid Note: ALLOW suitable alternatives for 'to left', e.g.: towards reactants OR towards $\mathrm{CrO}_{4}{ }^{2-} / \mathrm{H}^{+}$ OR in reverse direction OR favours the left IGNORE just H^{+}concentration decreases (needs role of alkali) IGNORE concentration of water increases (needs role of alkali)

Question			Answer	Marks	Guidance
4	(d)	(i)	Catalyst (name or correct formula) AND balanced equation for the reaction catalysed	1	Many possible responses but in practice it is likely that examples will be few, e.g. Fe AND $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$ $\mathrm{V}_{2} \mathrm{O}_{5} / \mathrm{Pt}$ AND $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}$ $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}_{3} \mathrm{PO}_{4}$ AND $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ Hydrogenation of an alkene: e.g. Ni AND $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}$ Esterification: e.g. $\mathrm{H}_{2} \mathrm{SO}_{4}$ AND $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+$ $\mathrm{H}_{2} \mathrm{O}$ ALLOW multiples for equation Note: the reaction chosen must be a feasible industrial reaction. If you see an alternative from the list above please contact your TL
4	(d)	(ii)	Any two from: lower temperatures/lower pressures (can be used) lower energy demand OR uses less fuel OR reduces CO_{2} emissions \checkmark (different reactions can be used with) greater atom economy OR less waste OR can reduce use of toxic solvents OR can reduce use of toxic reactants \checkmark (catalysts are often enzymes) generating specific products \checkmark	2	IGNORE catalyst not used up in reaction IGNORE catalyst can be re-used IGNORE lower activation energy IGNORE cheaper IGNORE less greenhouse gases OR reduces global warming ALLOW increases atom economy ALLOW reduce use of hazardous/toxic/harmful/poisonous chemicals

Question			Answer		Marks 1	Guidance
4	(e)	(i)	Thunderstorms/lightning AND aircraft \checkmark			IGNORE car engines
4	(e)	(ii)	$\begin{aligned} & \mathrm{NO}+\mathrm{O}_{3} \rightarrow \mathrm{NO}_{2}+\mathrm{O}_{2} \checkmark \\ & \mathrm{NO}_{2}+\mathrm{O} \rightarrow \mathrm{NO}+\mathrm{O}_{2} \downarrow \end{aligned}$		2	ALLOW $\mathrm{NO}_{2}+\mathrm{O}_{3} \rightarrow \mathrm{NO}+2 \mathrm{O}_{2}$ IGNORE dots IGNORE O $+\mathrm{O}_{3} \rightarrow \mathrm{2O}_{2}$ IGNORE $2 \mathrm{O}_{3} \rightarrow 3 \mathrm{O}_{2}$
				Total	19	

Question		Answer	Marks	Guidance
5	(a)	$\mathrm{C}_{n} \mathrm{H}_{2 n+2} \checkmark$	1	
5	(b)	Formation of NO and CO 2 marks $\mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}$ AND $\mathrm{C}_{8} \mathrm{H}_{18}+81_{1}^{1} \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}+9 \mathrm{H}_{2} \mathrm{O}$ (N_{2} and O_{2} react in) hot conditions (to form NO) OR incomplete combustion (of $\mathrm{C}_{8} \mathrm{H}_{18}$ produces CO) \checkmark	6	ANNOTATE ANSWER WITH TICKS AND CROSSES IGNORE state symbols ALLOW multiples, e.g. $1 / 2 \mathrm{~N}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{NO}$ $2 \mathrm{C}_{8} \mathrm{H}_{18}+17 \mathrm{O}_{2} \rightarrow 16 \mathrm{CO}+18 \mathrm{H}_{2} \mathrm{O}$ ALLOW equations for incomplete combustion that give CO with CO_{2} and/or C $\text { e.g. } \mathrm{C}_{8} \mathrm{H}_{18}+101 \frac{1}{2} \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}+4 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O}$ ALLOW $\mathrm{C}_{8} \mathrm{H}_{18}+\mathrm{N}_{2}+91 / 2 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}+9 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NO}$ IGNORE NO/CO form in engine (in question)
		Reducing NO and CO by catalytic converter CO and NO /reactants are adsorbed (onto surface) Bonds in reactants weaken OR activation energy decreases \checkmark Reaction: $2 \mathrm{CO}+2 \mathrm{NO} \longrightarrow 2 \mathrm{CO}_{2}+\mathrm{N}_{2} \checkmark$ CO_{2} and N_{2} desorb (from surface) OR products desorb (from surface) \checkmark		ALLOW CO and NO /reactants bond to surface (of catalyst) DO NOT ALLOW absorbed ALLOW bonds weaken in CO OR bonds weaken in NO IGNORE state symbols ALLOW multiples, e.g. $\mathrm{CO}+\mathrm{NO} \rightarrow \mathrm{CO}_{2}+1 / 2 \mathrm{~N}_{2}$ ALLOW products leave the surface/catalyst OR CO_{2} and N_{2} no longer bonded to surface/catalyst ALLOW deadsorption ALLOW diffuse away for desorption

Question		Answer	Marks	Guidance
$\mathbf{5}$	(c)	structure of a branched saturated hydrocarbon with 8 C atoms \checkmark structure of a cyclic saturated hydrocarbon with 8 C atoms \checkmark Correct name for BOTH structures given \checkmark	$\mathbf{3}$	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above
$\mathbf{5}$	(d)	ANY TWO from abundance (in atmosphere) OR amount (in atmosphere) OR (atmospheric) concentration OR percentage (in air) \checkmark OR ability to absorb infrared/IR (radiation) \checkmark OR residence time \checkmark	$\mathbf{2}$	DO NOT ALLOW names for hydrocarbons that do not have $\mathbf{8 C}$ atoms

Question			Answer	Marks	Guidance
6	(b)	(i)		2	ALLOW 1 mark if skeletal formulae of both E and Z hex-2-ene are shown but in the incorrect columns IF correct unambiguous structural OR displayed OR mixture of formulae are shown ALLOW 1 mark if both stereoisomers are in the correct columns e.g the following scores 1 mark
					 IF the skeletal formula of E hex-3-ene is shown in the first box ALLOW 1 mark for the skeletal formula of Z hex-3-ene as ECF
6	(b)	(ii)	(carbon-carbon) double bond does not rotate OR has restricted rotation Each carbon atom of the double bond attached to (two) different groups/atoms	2	
6	(c)	(i)	 One repeat unit shown \checkmark (could be any of the three repeat units shown)	1	ALLOW repeat unit at any point along the section provided that it works, e.g.

Question			Answer	Marks	Guidance
6	(c)	(ii)	Structure of pent-2-ene:	1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)
6	(c)	(iii)	$(50,000 / 70=$) 714 OR $715 \checkmark$	1	MUST be a whole number
			Total	11	

Question			Answer	Marks	Guidance
7	(b)	(i)	Infrared for \boldsymbol{G} 2 marks $1700 \mathrm{~cm}^{-1}$ AND C=O/carbonyl group (broad) 2300-3600 cm^{-1} AND O-H in carboxylic acid	6	ANNOTATE ANSWER WITH TICKS AND CROSSES LOOK ON THE SPECTRUM for labelled peaks which can be given credit ALLOW ranges from Data Sheet: $\mathrm{C}=\mathrm{O}$ within range $1640-1750 \mathrm{~cm}^{-1}$; (broad) O-H within range $2500-3300 \mathrm{~cm}^{-1}$
			Structures 3 marks $\begin{aligned} & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \downarrow \\ & \mathrm{CH}_{3} \mathrm{CHOHCH}_{3} \checkmark \\ & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH} \downarrow \end{aligned}$		ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$ for carboxylic acid IGNORE names IGNORE labels DO NOT ALLOW missing H atom(s) in a displayed formula for one structure but ALLOW missing H atoms in subsequent structures
			Equation for formation of \mathbf{G} 1 mark $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}+2[\mathrm{O}] \rightarrow \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \checkmark$		ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above in equation

Question			Answer	Marks	Guidance
7	(b)	(ii)	2 marks for correct ester. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}\left(\mathrm{CH}_{3}\right)_{2}$ Award 1 mark for: OR $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ Ambiguous ester: $\quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOC}_{3} \mathrm{H}_{7} \checkmark$	2	ANNOTATE ANSWER WITH TICKS AND CROSSES ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ IF there is one bond and its H missing from the correct ester award 1 mark
			Total	13	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee

OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

