

Chemistry

Advanced GCE A2 7882

Advanced Subsidiary GCE AS 3882

Mark Schemes for the Units

January 2008

3882/7882/MS/R/08J

OCR (Oxford Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2008

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

CONTENTS

Advanced GCE Chemistry (7882)

Advanced Subsidiary GCE Chemistry (3882)

MARK SCHEME FOR THE UNITS

Unit/Cor	Unit/Content			
2811	Foundation Chemistry	1		
2812	Chains and Rings	5		
2813/01	How Far? How Fast?/Experimental Skills 1 Written Paper	11		
2813/03	How Far? How Fast?/Experimental Skills 1 Practical Examination	15		
2814	Chains, Rings and Spectroscopy	20		
2815/01	Trends and Patterns	28		
2815/02	Biochemistry	33		
2815/04	Methods of Analysis and Detection	36		
2815/06	Transition Elements	40		
2816/01	Unifying Concepts in Chemistry/Experimental Skills 2 Written Paper	44		
2816/03	Unifying Concepts in Chemistry/Experimental Skills 2 Practical Examination	49		
Grade Th	Grade Thresholds			

2811 Foundation Chemistry

1)(a)(i)atoms of same element/same atomic number/same number of protons with different numbers of neutrons/different masses \checkmark [1](ii)isotope protons neutrons electrons 1B 5 6 5 \checkmark [2](iii)weighted mean mass of an atom/average mass of an atom/average mass of the naturally occurring isotopes \checkmark compared with carbon-12 \checkmark 1/12th of mass of carbon-12/on a scale where carbon-12 is 12 \checkmark [3](b)(i)weighted mean mass of an element compared with 1/12th the mass of 1 mole of atoms of an element compared with 1/12th the mass of 1 mole of carbon-12 is an alternative "mass of the atoms of the element that contains the same number of atoms as are in 1 mole of carbon-12" \longrightarrow 2 marks (mark lost because of mass units)[1](ii)B changes from (+)3 \checkmark to 0 \checkmark 'oxidation number decreases' with no numbers scores one mark (must be in terms of or no. Ignore electrons) Mark independently[1](d)X = 120° \checkmark 3 bonded pairs / 3 bonds \checkmark Y = 104-105° \checkmark 2 lone pairs repel (more) / electron pairs get as far apart as possible (anywhere) / electron pairs get as far apart as possible (anywhere) / lone pairs repel (more) / bonds repel \checkmark [5]	Question	n No.						Max Mark	
(ii)isotope isotope protons isotope pneutrons pelectrons p[2](iii)weighted mean mass of an atom/average mass of an atom/average mass of the naturally occurring isotopes \checkmark compared with carbon-12 \checkmark 1/12th of mass of carbon-12 \checkmark 1/12th of mass of a nelement compared with 1/12th the mass of 1 mole of atoms of an element compared with 1/12th the mass of 1 mole of carbon-12 is an alternative "mass of the atoms of the element that contains the same number of atoms as are in 1 mole of carbon-12" \longrightarrow 2 marks (mark lost because of mass units)[1](iii)weighted than 10 B) \checkmark [1](c)(i)H_3BO_3 + 3K \longrightarrow B + 3KOH \checkmark [1](iii)B changes from (+)3 \checkmark to 0 \checkmark 'oxidation number decreases' with no numbers scores one mark (must be in terms of ox no. Ignore electrons) Mark independently[2](d)X = 120° \checkmark 2 lone pairs AND (2 bonded pairs OR 2 bonds) \checkmark electron pair sepel (more) / bonds repel \checkmark Any reference to atoms repelling contradicts 'repel mark'[5]	1)	(a)(i)	atoms of same element/same atomic number/same number of protons with different numbers of neutrons/different masses v				[1]		
 (b)(i) weighted mean mass of an atom/average mass of an atom/average mass of the naturally occurring isotopes √ compared with carbon-12 √ 1/12th of mass of carbon-12 / 1/12th of mass of carbon-12 / 1/12th of mass of carbon-12 / 1/12th of mass of 1 mole of atoms of an element compared with 1/12th the mass of 1 mole of carbon-12 is an alternative "mass of the atoms of the element that contains the same number of atoms as are in 1 mole of carbon-12" → 2 marks (mark lost because of mass units) (ii) more of 1¹B (than 10B) √ (c)(i) H₃BO₃ + 3K → B + 3KOH √ (ii) B changes from (+)3 ✓ to 0 ✓ 'oxidation number decreases' with no numbers scores one mark (must be in terms of ox no. Ignore electrons) Mark independently (d) X = 120° ✓ 2 lone pairs / 3 bonds ✓ Y = 104-105° ✓ 2 lone pairs as far apart as possible (anywhere) / electron pairs get as far apart as possible (anywhere) / lone pairs repel (more) / bonds repel ✓ 		(ii)	isotope ¹⁰ B ¹¹ B	protons 5 5	neutrons 5 6	electrons 5 5	√ √	[2]	
more of ¹¹ B (than ¹⁰ B) \checkmark [1](c)(i) $H_3BO_3 + 3K \longrightarrow B + 3KOH \checkmark$ [1](ii)B changes from (+)3 \checkmark to 0 \checkmark 'oxidation number decreases' with no numbers scores one mark (must be in terms of ox no. Ignore electrons) Mark independently[2](d) $\mathbf{X} = 120^{\circ} \checkmark$ 3 bonded pairs / 3 bonds \checkmark [5] $\mathbf{Y} = 104-105^{\circ} \checkmark$ 2 lone pairs AND (2 bonded pairs OR 2 bonds) \checkmark electron pair get as far apart as possible (anywhere) / lone pairs repel (more) / bonds repel \checkmark [5]		(b)(i) (ii)	weighted mean mass of an atom/average mass of an atom/average mass of the naturally occurring isotopes \checkmark compared with carbon-12 \checkmark 1/12th of mass of carbon-12/on a scale where carbon-12 is 12 \checkmark mass of 1 mole of atoms of an element compared with 1/12th the mass of 1 mole of carbon-12 is an alternative "mass of the atoms of the element that contains the same number of atoms as are in 1 mole of carbon-12" \longrightarrow 2 marks (mark lost because of mass units)			[3]			
(c)(i) $H_3BO_3 + 3K \longrightarrow B + 3KOH \checkmark$ [1](ii)B changes from (+)3 ✓ to 0 ✓ 'oxidation number decreases' with no numbers scores one mark (must be in terms of ox no. Ignore electrons) Mark independently[2](d) $X = 120^{\circ} \checkmark$ 3 bonded pairs / 3 bonds ✓[5]Y = 104-105° ✓ 2 lone pairs AND (2 bonded pairs OR 2 bonds) ✓ electron pair repulsion (anywhere) / electron pairs get as far apart as possible (anywhere) / lone pairs repel (more) / bonds repel ✓[5]			more of ¹¹ B (than ¹⁰ B) ✓						
 (ii) B changes from (+)3 ✓ to 0 ✓ 'oxidation number decreases' with no numbers scores one mark (must be in terms of ox no. Ignore electrons) Mark independently (d) X = 120° ✓ (d) X = 104-105° ✓ 2 lone pairs AND (2 bonded pairs OR 2 bonds) ✓ electron pair repulsion (anywhere) / electron pairs get as far apart as possible (anywhere) / lone pairs repel (more) / bonds repel ✓ Any reference to atoms repelling contradicts 'repel mark' 		(c)(i)	$H_3BO_3 + 3$	$3K \longrightarrow B$	+ 3KOH ✓			[1]	
(d) $X = 120^{\circ} \checkmark$ [5] 3 bonded pairs / 3 bonds \checkmark $Y = 104-105^{\circ} \checkmark$ 2 lone pairs <i>AND</i> (2 bonded pairs <i>OR</i> 2 bonds) \checkmark electron pair repulsion (anywhere) / electron pairs get as far apart as possible (anywhere) / lone pairs repel (more) / bonds repel \checkmark <i>Any reference to atoms repelling contradicts 'repel mark'</i>		(ii)	B changes 'oxidation r (<i>must be ir</i> Mark	from (+)3 ✓ number dec n terms of o. c independe	<pre>✓ to 0 ✓ reases' with x no. Ignore ntly</pre>	no numbers electrons)	scores one mark	[2]	
15		(d)	 X = 120° ✓ 3 bonded pairs / 3 bonds ✓ Y = 104-105° ✓ 2 lone pairs AND (2 bonded pairs OR 2 bonds) ✓ electron pair repulsion (anywhere) / electron pairs get as far apart as possible (anywhere) / lone pairs repel (more) / bonds repel ✓ Any reference to atoms repelling contradicts 'repel mark' 			[5]			

2) (a)(i)	heating or thermal decomposition of limestone/CaCO ₃ / correct equation: CaCO ₂ \longrightarrow CaO + CO ₂ \checkmark	[1]
(ii)	farming: neutralising acid soils/reduces acidity of soil ✓	[1]
(b)(i)	$Ca(OH_2)(aq) + 2 HNO_3(aq) \longrightarrow Ca(NO_3)_2(aq) + 2 H_2O(I) \checkmark$	[1]
(ii)	2 sig fig minimum throughout 0.0105 x 22.45/1000 = 2.36 x $10^{-4} \checkmark$ (calc: 2.35725 x 10^{-4})	[1]
(iii)	ans to (ii) / 2 = 1.18 x 10 ⁻⁴ ✓ (calc: 1.178625 x 10 ⁻⁴)	[1]
(iv)	ans to (iii) x 40 = 0.00472 ✓ (calc: 0.0047145 → 0.00471)	[1]
(v)	Ca(NO ₃) ₂ = 40.1 + (14 + 48) x 2 = 164.1 (accept 164) / x = 272.1 - 164.1 = 108 \checkmark x = 6 / Ca(NO ₃) ₂ .6H ₂ O \checkmark	[2]
	If candidate has based this part on $Ca(OH)_2$, '11H ₂ O' would score 1 mark consequentially If (272.1 – incorrect calculated value for $Ca(NO_3)_2$), then 2nd mark can be achieved consequentially but a whole number is required.	
(c)	Ca(s) + $2H_2O(I) \longrightarrow Ca(OH)_2(aq) + H_2(g)$ \checkmark for balanced equation \checkmark for state symbols of correct species in equation	[2]
(d)(i)	$Ca^{+}(g) \longrightarrow Ca^{2+}(g) + e^{-}$ equation \checkmark state symbols must be (g), (g) but can be for any attempted equation losing electron(s) \checkmark	[2]
(ii)	mol Ca = $5.00/40.1$ or $0.125 (0.12468379) \checkmark$ 1 mol Ca requires $578 + 1145 = 1723 (kJ) \checkmark$ so energy required = answer above derived from IE data x 0.125 1723 x 0.125 = 215 (kJ) 3 sig figs \checkmark	[3]
	eg Use of 1145 only gives 143 kJ consequentially (would score 2)	[4]
(iii)	Assume 'down the group'	
	ionisation energy decreases 🗸	
	atomic radii increases / there are more shells √	
	there is more shielding ✓ ' <i>more'</i> is essential	
	attraction decreases / increased shielding and distance outweigh the increased nuclear charge \checkmark	
		19

Mark Sch	eme
----------	-----

3) (a)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁵ ✓	[1]
(b)(i)	<pre>// Mg]²⁺ [· · · · · · · · · · · · · · · · · ·</pre>	[2]
(ii)	Mg conducts as there are free/delocalised/mobile electrons ✓ not just 'sea of electrons' MgCl ₂ (s) does not conduct as no free/delocalised/mobile electrons or ions or charge carriers ✓ MgCl ₂ (aq) conducts as ions move ✓ MgCl ₂ dissolves because water is a polar solvent ✓ Any 3 observations above	[3] max
(c)	increasing nuclear charge/number of protons ✓ electrons added to same shell /same or similar shielding ✓ electrons experience greater attraction or greater pull ✓	[3]
(d)	moles $Cl_2 = 145/24000 = 6.04 \times 10^{-3} \text{ mol} \checkmark$ accept 0.006 mol Cl_2 is in excess as 0.00604 > 0.005 mol Cl_2 / Cl_2 is in excess as 0.01208 > 0.01 mol $Cl_2 \checkmark$ Explanation using equation required for 2nd mark	[2]
(e)	Precipitation Add AgNO ₃ / Ag ⁺ (could be in equation) ✓ NaCl/Cl ⁻ → white precipitate / dissolves in dilute NH ₃ ✓ NaBr/Br ⁻ → cream precipitate / dissolves in conc NH ₃ or precipitate does not dissolve in dilute NH ₃ ✓ not 'Cl' or 'Br' or 'chlorine' or 'bromine' but ecf for a second occurrence Ag ⁺ + Cl ⁻ → AgCl ✓ or equation for Br ⁻ or a full equation, state symbols not required eg: AgNO ₃ + NaCl → AgCl + NaNO ₃ 'precipitate' is required at least once – could be from : white precipitate or cream precipitate or AgCl(s)	[4]
OR	Displacement Add chlorine / Cl ₂ (could be in equation) ✓ (but not Cl) NaCl → no change/no reaction/pale green ✓ NaBr → goes orange/yellow/brown ✓ If candidate mentions formation of a precipitate do not award observation mark 2Br ⁻ + Cl ₂ → Br ₂ + 2Cl ⁻ ✓ or a full equation, state symbols not required eg: 2NaBr + Cl ₂ → 2NaCl + Br ₂	16

 (a) H₂O: Hydrogen bonding shown in words or in diagram: H bonding from O of 1 H₂O molecule to H of another ✓ dipoles shown or described ✓ with lone pair of O involved in the bond ✓ H → Ö; → → H → Ö; H → H Two properties from: Ice is less dense/lighter than water/floats on water/ max density at 4°C ✓ explanation: H bonds hold H₂O molecules apart / open lattice in ice / H-bonds are longer ✓ Higher melting/boiling point than expected ✓ <i>Not just high</i> Accept: 'unusually high/strangely high/relatively high' explanation: H bonds need to be broken ✓ must imply that intermolecular bonds are broken High surface tension ✓ explanationstrength of H bonds across surface ✓ <i>mark 2 properties only: max 4</i> 	[3]
 (b) CH₄: van der Waals' forces / interactions based on instantaneous/temporary/transient interactions ✓ HCI: (permanent) dipole – (permanent) dipole interactions ✓ intermolecular forces are stronger in HCI than in CH₄ / more energy required to break the intermolecular forces in HCI than in CH₄ ✓ At least two sentences that show legible text with accurate spelling, punctuation and grammar so that the meaning is clear.✓ (Mark this from anywhere within Q4) 	[3]
	11

2812 Chains and Rings

Question No).	Max Mark
1a i	boiling point increases with increased chain length/ $M_r \checkmark$ more surface interaction/electrons/van der Waals/intermolecular forces \checkmark	2
ii	boiling point decreases with increased branching ✓ less surface contact/cannot pack as close/fewer van der Waals/fewer intermolecular forces ✓	2
iii	59 – 68 °C ✓	1
b i	1 mark for pentane ✓ and one for 2,2-dimethylpropane ✓	2
ii	allow 1 mark if not skeletal but both correct. $C_{5}H_{12} \xrightarrow{any of:} + H_{2} \xrightarrow{any of:} + H_{2} \xrightarrow{any of these scores both mark} \times \times$	2
iii	better fuels/burn more efficiently/increases octane rating/used as a fuel additives/reduces knocking(ignite less easily) ✓ do not allow " <i>easier to burn</i> " as this is the same as pre-ignition	1

Question No.		Max Mark
2a	 C-H bond energy is large ✓ alkanes/C-H bonds are non-polar ✓ hence alkanes are not attracted / not attacked by nucleophiles or electrophiles ✓ 2 from 3 allow 1 mark for <i>"no double bond therefore will not react with electrophiles"</i> 	2
b i	(molecule/atom/particle <i>(not ion)</i> that) contains an unpaired/single/lone electron ✓ (not free electron)	1
ii	homolytic/homolysis	1
iii	uv/sunlight/high temperature/ >200°C✓ (not just heat or hot or high temp + high pressure)	1
iv	$CH_{3}CH_{2}CH_{3} + CI \bullet \longrightarrow CH_{3}CH_{2}CH_{2} \bullet + HCI \checkmark$ $CH_{3}CH_{2}CH_{2} \bullet + CI_{2} \longrightarrow CH_{3}CH_{2}CH_{2}CI + CI \bullet \checkmark$	2
V	$CH_3CH_2CH_2\bullet + CH_3CH_2CH_2\bullet (\longrightarrow C_6H_{14})/explained inwords but must refer to propyl (not propane) free radicals \checkmarkif correct equation ignore "propane free rads"$	1
c i	$CH_{3}CH_{2}CH_{3} / C_{3}H_{8} + 5O_{2} \longrightarrow 3CO_{2} + 4H_{2}O \checkmark$	1
ii	Possibility of forming CO/ incomplete combustion/good ventilation allows complete combustion ✓	1

Question No.		Max Mark
3a i	hydrogen ✓ Ni/Pt/Rh/Pd ✓	2
ii	H ₂ O/steam \checkmark H ₃ PO ₄ / H ₂ SO ₄ \checkmark	2
	HBr/ NaBr + H_2SO_4 / NaBr + H^+ \checkmark	1
b	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} H_2C & -CH & -CH_2 & -OH \\ \end{array} \\ H_2C & -CH & -CH_2 & -OH \end{array} \end{array} \\ \begin{array}{c} H_2C & -CH & -CH_2 & -OH \\ \end{array} \\ \end{array} \\ \begin{array}{c} H_2C & -CH & -CH_2 & -OH \\ \end{array} \\ \end{array} \\ \begin{array}{c} H_2C & -CH & -CH_2 & -OH \\ \end{array} \\ \end{array} \\ \begin{array}{c} H_2C & -CH & -CH_2 & -OH \\ \end{array} \\ \end{array} \\ \begin{array}{c} H_2C & -CH & -CH_2 & -OH \\ \end{array} \\ \end{array} \\ \begin{array}{c} H_2C & -CH & -CH_2 & -OH \\ \end{array} \\ \end{array} \\ \begin{array}{c} H_2C & -CH & -CH_2 & -OH \\ \end{array} \\ \begin{array}{c} H_2C & -CH & -CH_2 & -OH \\ \end{array} \\ \end{array} \\ \begin{array}{c} H_2C & -CH & -CH_2 & -OH \\ \end{array} \\ \end{array} \\ \begin{array}{c} H_2C & -CH & -CH_2 & -OH \\ \end{array} \\ \begin{array}{c} H_2C & -CH & -CH_2 & -OH \\ \end{array} \\ \end{array} \\ \begin{array}{c} H_2C & -CH & -CH_2 & -OH \\ \end{array} \\ \begin{array}{c} H_2C & -CH & -CH_2 & -OH \\ \end{array} \\ \begin{array}{c} H_2C & -CH & -CH_2 & -OH \\ \end{array} \\ \begin{array}{c} H_2C & -CH & -CH_2 & -OH \\ \end{array} \\ \end{array} \\ \begin{array}{c} H_2C & -CH & -CH_2 & -OH \\ \end{array} \\ \begin{array}{c} H_2C & -CH & -CH_2 & -OH \\ \end{array} \\ \begin{array}{c} H_2C & -CH & -CH_2 & -OH \\ \end{array} \\ \begin{array}{c} H_2C & -CH & -CH_2 & -OH \\ \end{array} \\ \end{array} \\ \begin{array}{c} H_2C & -CH & -CH_2 & -OH \\ \end{array} \\ \begin{array}{c} H_2C & -CH & -CH_2 & -OH \\ \end{array} \\ \begin{array}{c} H_2C & -CH & -CH_2 & -OH \\ \end{array} \\ \begin{array}{c} H_2C & -CH & -CH_2 & -OH \\ \end{array} \\ \begin{array}{c} H_2C & -CH & -CH_2 & -OH \\ \end{array} \\ \end{array} \\ \begin{array}{c} H_2C & -CH & -CH_2 & -OH \\ \end{array} \\ \begin{array}{c} H_2C & -CH & -CH_2 & -OH \\ \end{array} \\ \begin{array}{c} H_2C & -CH & -CH_2 & -OH \\ \end{array} \\ \end{array} \\ \begin{array}{c} H_2C & -CH & -CH_2 & -OH \\ \end{array} \\ \end{array} \\ \begin{array}{c} H_2C & -CH & -CH_2 & -OH \\ \end{array} \\ \end{array} \\ \begin{array}{c} H_2C & -CH & -CH_2 & -OH \\ \end{array} \\ \end{array} \\ \begin{array}{c} H_2C & -CH & -CH_2 & -OH \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} H_2C & -CH & -CH_2 & -OH \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} H_2C & -CH & -CH_2 & -OH \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} H_2C & -CH & -CH_2 & -OH \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ \\ \begin{array}{c} H_2C & -CH \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} H_2C & -CH & -C	4
c i	$ \begin{array}{c} \overbrace{H}\\ \overbrace{H}\\ \overbrace{CH_{2}OH}\\ Febeat unit \end{array} $ $ \begin{array}{c} \overbrace{H}\\ \overbrace{CH_{2}OH}\\ Febaat \end{array} $ $ \begin{array}{c} \overbrace{H}\\ \overbrace{CH_{2}OH}\\ Febaat \end{array} $ $ \begin{array}{c} \overbrace{H}\\ \overbrace{CH_{2}OH}\\ Febaat \end{array} $ $ \begin{array}{c} \overbrace{H}\\ Febaat $ $ \begin{array}{c} \overbrace{H}\\ Febaat \end{array} $ $ \begin{array}{c} \overbrace{H}\\ Febaat $ $ \begin{array}{c} F$	2
ii	$n \left(\begin{array}{c} H \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	2
iii	poly(prop-2-en-1-ol)/polyprop-2-en-1-ol ✓	1

3d i	$\begin{array}{llllllllllllllllllllllllllllllllllll$	2
iii	$H_{3}C \xrightarrow{OH} OH OH H_{3}C \xrightarrow{OH} OH H_{3}C $	2
	$H_{3}C \xrightarrow{O} C \xrightarrow{O} H_{3}C \xrightarrow{O} O $	

Max Mark			Question No.
3	$154 \times 77.9/100 = 120 = 10 \text{ Cs}$ $154 \times 11.7/100 = 18 = 18 \text{ Hs}$ $154 \times 10.4/100 = 16 = 1 \text{ O}$ hence = C ₁₀ H ₁₈ O gets all 3 marks $\checkmark \checkmark \checkmark$	C : H : O 6.5 : 11.7 : 0.65 \checkmark 10 : 18 : 1 hence = C ₁₀ H ₁₈ O \checkmark M _R /120 + 18 +16 = 154 \checkmark	4a
1	in alkene/ C≡C/ alkyne/	contains a (C=C) double bond/ a unsaturated ✓	b i
2	of $Br_2 \checkmark$ $r_2 \checkmark$ $r_3 \checkmark$	uses correctly 159.8/ 160 as <i>M</i> _r (3.196 ÷ 159.8 = 0.02 mole of Br 0.04 ✓ ecf (used 80 instead of 16	ii
1	double bonds/ one C=C triple	compound must have two C=C bond ✓	iii
1	tipe of the second seco		
1		linalool 🗸	d i
1	others would be oxidized/are	It's the only tertiary alcohol/ the oprimary alcohols ✓	ii
3)Cl √	reacts with Na/ PCI ₅ /SOCI ₂ /RCC H ₂ or HCl or SO ₂ \checkmark	iii
$H_{2}C - CH_{2}$ $H_{2}C - CH_{2}$ $H_{2}C = CH$ $H_{2}C = C$ H	$H_{2}C - CH_{2}$ $H_{3}C - CH_{3}$ $H_{3}C - CH_{3}$ $H_{2}C - CH_{3}$ $H_{3}C - H_{2}C - CH_{3}$ $H_{3}C - H_{3}C$	correct organic product H_2C-CH_2 H_3C $C=CH$ $C-CH_3$ H_3C $H_2C=C$ ONa or H mark ecf to d (i)	Na compound H ₂ Na alkoxide worth 1 mark
	- н	ш - н mark ecf to d (i)	

Questio	on No.			Мах	Mark
5 a		There are two possible methods but marks common to both are add Ag ⁺ / AgNO ₃ \checkmark warm/heat in (water bath)/ warm to a specified temp between 30 – 70 °C \checkmark equi-molar quantities of RX/ same number of drops of RX/ same amount of RX \checkmark precipitate formed/goes cloudy \checkmark		4	
	if AgNO ₃ dissolved in ethanol \checkmark if using NaOH must be followed by HNO ₃ before adding the AgNO ₃ \checkmark must monitor rate \checkmark of ppt must monitor amount \checkmark of ppt			2	
C-I is fastest and C-CI is slowest /correct order \checkmark because C-CI bond strongest/shortest & C-I weakest/longest/ refers the strength of the bonding in named halogens \checkmark Ag ⁺ + X ⁻ \longrightarrow AgX \checkmark		t /correct order ✓ C-I weakest/longest/ refers to		4	
		Ag ⁺ + X ⁻ → AgX \checkmark			-
		R-X + OH ⁻ / H ₂ O \longrightarrow R-OH + SPAG – two correct sentences ir	X ⁻ / HX ✓		1 9

2813/01 How Far? How Fast?/Experimental Skills 1 Written Paper

Question No		Max Mark
1) (a)	$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O \checkmark$	[1]
(b)	energy = mc∆T/ 150 x 4.18 x 42 ✓	
	=26.3 (kJ) ✓	[2]
(c)	number of moles = $\frac{0.600}{16}$ = 0.0375 \checkmark	[1]
(d)	enthalpy = <u>26.3</u> = 701 (kJ mol ⁻¹) ✓ 0.0375	
	Δ Hc = - 701 (kJ mol ⁻¹) \checkmark negative sign can be scored as stand-alone mark	[2]
		[Total: 6]

Question No		Max Mark
2(a)(i)	the (total) enthalpy change (for a reaction) is independent of the route taken owtte \checkmark	[1]
(ii)	$N_2(g) + 2H_2(g) \rightarrow N_2H_4(I) \checkmark$	[1]
(iii)	cycle ✓	
	∆H + 51 = 2(-241) ✓	
	∆H = - 533 (kJ) ✓	[3]
(iv)	products are non-toxic/ not greenhouse gases/ occur naturally in the atmosphere/ no carbon dioxide is formed ✓	[1]
(b)(i)	any 2 from	
	reaction is occurring in a closed system ✓ rate of forward reaction = rate of reverse reaction ✓ macroscopic properties/ suitable named macroscopic property remains constant ✓	[2]
(ii)	bonds broken = 2(C=O) + 4(H-H) = 3354 (kJ) ✓	
	bonds made = 4(C-H) + 4(O-H) = 3508 (kJ) ✓	
	enthalpy change = -154 (kJ) ✓	[3]
(iii)	low temperature ✓	
	because the (forward) reaction is exothermic ✓ (ecf possible from (ii))	
	high pressure ✓	
	because there are more moles (of gas) on the LHS \checkmark	[4]
		[Total: 15]

Question No		Max Mark
3(a)	a proton donor/ an H⁺ donor ✓	[1]
(b)(i)	CuO(s) + 2HCl(aq) → CuCl ₂ (aq) + H ₂ O(l)/ CuO(s) + 2 H ⁺ (aq) → Cu ²⁺ (aq) + H ₂ O(l)/ O ²⁻ + 2H ⁺ (aq) → H ₂ O(l)	
	all formulae and balancing ✓	
	$\begin{array}{r} Na_2CO_3(s) + 2HCl(aq) \rightarrow 2NaCl(aq) + CO_2(g) + H_2O(l)/\\ Na_2CO_3(s) + 2 H^+(aq) \rightarrow 2Na^+(aq) + CO_2(g) + H_2O(l)/\\ CO_3^{2^-} + 2 H^+(aq) \rightarrow CO_2(g) + H_2O(l) \end{array}$	
	all formulae and balancing \checkmark	
(ii)	state symbols in both equations (ignore ss on CuO and Na ₂ CO ₃) \checkmark	[3]
(11)	high activation energy/ strong ionic bonds present (in copper oxide)/ high lattice enthalpy (in copper oxide) ✓	[1]
(111)	bubbling/ effervescence ✓	[2]
(c)(i)	solid disappears/solid dissolves/ blue or green solution formed \checkmark	[1]
(ii)	completely dissociated/ completely ionised \checkmark	[1]
(iii)	$HCIO_4 \rightarrow H^+ + CIO_4^- \checkmark$	[1]
(iv)	$Mg + 2H^+ \rightarrow H_2 + Mg^{2+} \checkmark$	[2]
	no difference in rate ✓	ITotal: 12
	the concentration of \mathbf{H}^+ is the same \checkmark	

Question No		Max Mark
4)	a catalyst provides an alternative pathway that has a lower activation energy ✓	
	more particles/ collisions exceed the activation energy/ more successful collisions occur \checkmark	[2]
	diagram to show	
	2 profiles with initial and final energies together \checkmark	
	two different energy humps with catalysed labelled as lower curve \checkmark	[2]
	$E_{\rm a}$ labelled on both/ labelled on one and statement $E_{\rm a}$ (cat) < $E_{\rm a}$ \checkmark	[5]
	equation 🗸	
	catalyst named ✓	
	equation 🗸	
	catalyst named ✓	
	examples include N ₂ + $3H_2 \rightarrow 2NH_3 \checkmark$ iron \checkmark	
	any alkene + H₂ → corresponding alkane ✓ nickel/platinum ✓	
	$2SO_2 + O_2 \rightarrow 2SO_3 \checkmark$ vanadium(V) oxide \checkmark	
	2CO + 2NO → 2CO ₂ + N ₂ / 4CO + 2NO ₂ → N ₂ + 4CO ₂ \checkmark platinum/ palladium/rhodium \checkmark	[4]
	equation for cracking/ reforming/ isomerisation of any alkane ✓ platinum/ zeolites ✓	
	adsorption 🗸	[3]
	bonds weakened 🗸	[Total:
	products desorbed ✓	12]

2813/03 How Far? How Fast?/Experimental Skills 1 Practical Examination

PLAN Skill P (16 marks out of 19 available)

T Titration method – 8 marks

T1	Makes up a standard solution of NaHCO ₃	
	Known mass and distilled water and use of volumetric flask required	[1]
T2	Nitric acid diluted by a factor of 10, 20, 25, 40 or 50 before titration <i>Pipette must be used for measurement of the 2M acid</i>	[1]
Т3	Equation for reaction given: NaHCO ₃ + HNO ₃ \rightarrow NaNO ₃ + CO ₂ + H ₂ O and justification of quantities so that both solutions have [roughly] equal concentrations or calculation of mass of NaHCO ₃ required for reaction with nitric acid	[1]
Τ4	Use of pipette and burette to measure solutions in titration procedure Solutions can be used either way round	[1]
T5	Two consistent titres (<i>or</i> within 0.1 cm ³) obtained	[1]
Т6	Suitable indicator chosen <i>and</i> correct final colour at end-point stated <i>Litmus and universal indicators are not acceptable.</i>	[1]
Т7	Correct calculation of relative formula mass of NaHCO ₃ from specimen data T7 can be awarded for any correct calculation of M_r	[1]
Т8	 Detailed calculation of relative formula mass of NaHCO₃ from specimen data T8 can be awarded in addition to T7 if the following conditions are met Both HNO₃ and NaHCO₃ were diluted/made up into solution The calculation uses specimen figures Working/explanation is very clearly explained 	[1]
G	Gas measurement procedure – 7 marks	
Mea	surement of mass loss is an acceptable alternative method	
G1	Use excess HNO ₃ acid and a known/weighed mass of solid NaHCO ₃	[1]
G2	Diagram showing collection using a gas syringe <i>or</i> inverted burette <i>or</i> measuring cylind [1]	der
	Do not award G2 in heating used or there is no bung or an unworkable conection.	
G3	Ignition tube used and simple explanation (to keep reagents apart/prevent loss of gas) or simple procedural note (tilt/shake to mix to start reaction) <i>Alternative separation methods (eg a divided flask) s are acceptable</i>	[1]
G4	Measure volume of gas when no more produced/ fizzing ceases /syringe stops moving	[1]
G5	Specimen calculation shown to justify [maximum] mass of NaHCO ₃ used Mass of solid must be deduced from capacity of gas collecting vessel	[1]

G6	Calculation shown to deduce a suitable [minimum] volume/concentration of nitric acid	[1]
G7	One accuracy precaution <i>Either</i> repeat whole experiment <i>and</i> take mean of readings <i>Or</i> use of gas syringe reduces loss of carbon dioxide caused by its solubility in water	[1]
S	Safety, Sources and QWC – 4 marks	
S1	 Nitric acid (2M) is corrosive <i>and</i> one of the following precautions if spilt, rinse/wash away spill with <u>plenty</u> of water dilute before use [in the titration] to reduce hazard level wear gloves 	[1]
		[,]
S2	 References to two secondary sources quoted as footnotes or at end of Plan. Book references must have page numbers Internet references must go beyond the first slash of web address Accept one <u>specific</u> reference to "Hazcards" or equivalent 	[1]
S3	QWC : text is legible and spelling, punctuation and grammar are accurate <i>There are less than</i> six <i>different errors in legibility, spelling, punctuation or grammar.</i>	[1]
S4	QWC: information is organised clearly and accurately	[1]
	 Is a word count given and within the limits 500 – 1000 words? Are scientific language, formulas and units used correctly Are descriptions logical and without excessive irrelevant/repeated material? 	

PART B PRACTICAL TEST

Part	1	Experiment with NaHCO ₃	[15 marks]
One : •	table Mas Initia	of readings <u>drawn</u> showing both sets of four readings labelled and listed s of weighing bottle (empty) <i>and</i> mass of weighing bottle + K Il temperature <i>and</i> minimum/final temperature	[1]
All m <i>and</i> <u>a</u>	asses <u>all</u> me	s recorded to two decimal places (or 3 dp consistently), with unit (somewhere asured temperatures recorded to one decimal place, with unit (somewhere	re)) [1]
Calcu <i>Mear</i> Mear	ulation n mas n tem	n of mean temperature fall and mean mass used, both correct as should be quoted to two decimal places perature should be to one decimal place	[1]
Accu • •	i racy If wit If wit	marks, based on mean temperature drop of supervisor. hin 0.8°C of supervisor's result \rightarrow 2 marks hin 1.3°C of supervisor's result \rightarrow 1 mark	[2]
(a)	(i)	Temperature drop/change (or candidate's mean figure quoted)	[1]
	(ii)	Heat absorbed correctly calculated to 2 or 3 sig fig (= 105 x temp drop)	[1]
(b)	<i>M</i> r o	f NaHCO ₃ = 84 (or appropriate A_r values shown added together)	[1]
	Меа	n number of moles of NaHCO ₃ , correctly calculated	[1]
(c)		+ 2CO ₂ + 2H ₂ O (<i>and</i> no other balancing figures)	[1]
	State Mari	e symbols (all correct: s – aq – aq – g – l) k is conditional to both chemical formulae in equation being correct	[1]
(d)	Met	nod mark: for dividing heat by no of moles and multiplying by 2	[1]
	Enth <i>Ans</i> i	alpy change, correctly calculated = $(a)(ii)/(b) \times 2/(1000)$ wer will be approx +33 kJ (for 2 moles NaHCO ₃)	[1]
(e)	Safe	ty: credit any two answers from the following	[2]
	•	Use colder acid or reduce the initial temperature of the acid Reduce the concentration of acid or add water to the acid.	

• Use the solid in lump form *or* use coarser powder.

2813	/03	Mark Scheme	January 2008
Part	2	Experiment with Na ₂ CO ₃	[12 marks]
Table	e of re	adings drawn <i>and</i> two sets of four readings shown [1]	
Both <i>A tec</i>	mass hnicai	readings to 2 dp with units and both temperature readings to 1 dp I error penalized in Part 1 is not penalized again in Part 2	[1]
Calcu	ulation	of mean temperature rise and mean mass used, both correct	[1]
Accu	racy: I	Both of candidate's temperature rises are within 0.5°C of each other	[1]
Accu	racy n If with If with	narks awarded compared to supervisor's mean value. nin 0.8°C of supervisor's result → 2 marks nin 1.3°C of supervisor's result → 1 mark	[2]
(a)	Heat	produced correctly calculated (= 105 x temp rise)	[1]
(b)	<i>M</i> r of	$Na_2CO_3 = 106$ (<i>or</i> appropriate Ar values added)	[1]
	Mear	n number of moles of Na_2CO_3 used.	[1]
(c)		→ Na ₂ SO ₄ + CO ₂ + H ₂ O (<i>and</i> no balancing figures)	[1]
(d)	Entha	alpy change, correctly calculated = ${}^{(a)}/{}_{(b) \times 1000}$	[1]
	Corre <i>Answ</i>	ect answer to 2 or 3 sig figs, <i>and</i> negative sign shown ver should be approx - 46 kJ mol ¹	[1]
Part	3	Enthalpy of decomposition[3 marks]	
(a)	(i)	Two downward arrows drawn, with tips pointing to bottom box	[1]
(a)	(ii)	Arrows correctly labelled with candidate's own values (<i>or</i> with values Qn paper)	on the [1]

⁽b) $\Delta H = (+)95.2 \text{ kJ}$ (using figures given) or about +79 kJ from candidate's results [1] Award the mark only for the correct answer, which is 1(d) - 2(d).

Part	4	Evaluation [14 mar	ˈks]
(a)	Awa NO r	rd marks from the best two strands mark for reference to small quantities of reagents or heat capacity of thermometer	
	•	Heat lost/gained [to/from surroundings]	[1]
		Conduction (allow "through sides") <i>or</i> convection (allow "out of top")	[1]
		Use a lid <i>or</i> cover the container <i>or</i> use a thicker cup/ cotton wool surround/ extra insulation	[1]
	•	Inaccuracy of thermometer (<i>or</i> it only reads to 0.5/1.0°C)	[1]
		High percentage error in measurement	[1]
		Use a more accurately calibrated thermometer/reading to [less than] 0.2°C	[1]
	•	Loss of [acid] spray	[1]
		Use a lid or a taller cup	[1]
	•	Fizzing/production of gas still occurring when final reading taken	[1]
		Reaction is not complete	[1]
		Stir more thoroughly or use a finer powder or speed up reaction	[1]
(b)	Tem	perature rise would be lower/less than before	[1]
	Twic	e as much water to be heated up, so temp rise would be half as much	[1]
(c)	(i)	No of moles of H_2SO_4 required [= no of moles of Na_2CO_3] = 0.018/0.019	[1]
		Minimum volume of sulphuric acid needed = 18 cm^3 , but 25 cm^3 used, which is	
		or number of moles of sulphuric acid present = 0.025, but only 0.018 mol needed	[1]
(c)	(ii)	To ensure that all of the carbonate reacted.	[1]
		To speed up the reaction in the later stages/reduce overall time that reaction take	s [1]
(d)	Any	2 points	[2]
	• •	Decomposition requires heat to be supplied, which would be difficult to measure It is not easy to measure the temperature of a powder/solid Decomposition reaction is at higher temperature than standard conditions /about 25°C	
	•	Difficult to tell when decomposition reaction was complete	

Mark Scheme

January 2008

2813/03

2814 Chains, Rings and Spectroscopy

Qu. No.		Marks	
1 (a)	2-methylpropanal ✓		
	$CH_{3}CUCH_{2}CH_{2}CH_{3}$	[2]	
		[4]	
(b)	75 - 130 (°C) ✓ (actual value is 103°C)	[1]	
(c) (i)	yellow/orange/red solid/precipitate AW √	[1]	
()			
(11)	reference to the identical bp (of pentanones) / unique mp (of derivatives) 🗸	[1]	
(d)	72./		
(4)		[1]	
(e) (i)	the number/ratio of protons of each 'type'/in each environment AW√	[1]	
()			
(11)	(they both) have one neighbouring proton / are next to CH ✓		
(iii)	any unambiguous formula of 2-methylpropanal ✓ eg		
	$\begin{array}{c} CH_3 \\ H_3C - \overset{CH_3}{C} - \overset{O}{C} \\ H \\ H \end{array} \\ H \end{array}$	[1]	
(iv)	allow any unambiguous labelling to link the correct protons to the peak - eg		
	one correct ✓ all three correct ✓		
	(2 x) max 1 mark ecf from the		
	CHO CHO CH CH ₃ wrong structure for:		
	CHO from any aldehyde		
	2 x (H _a from pentan-3-one		
	or methylbutanone		
		[0]	
	o/ppm CH trom metnyibutahone	[∠]	
	[Tota	l: 11]	

2814

24

Qu. No.			Marks
<u> </u>			
6 (a) (i)	ammonia √		[1]
(ii)	(nucleophilic) substitution ✓		[1]
(iii)	LiAlH₄ / Na in ethanol ✓		[1]
(iv)	reduction / (nucleophilic) addition 🗸		[1]
()			
(b)	\checkmark \checkmark		
	$C_6H_5CH_2CH_2NH_2 + CH_3COCI \longrightarrow C_6H_5CH_2CH_2NHCOCH_3$	+ HCI	
	(or use of the acid anhydride to aive	llow ecf on H2O as the	
	ethanoic acid as the other product)	roduct from ethanoic acid	[0]
	, , ,		[2]
(c)	basicity		
	a base is a proton acceptor AW ✓	any of the first	
		three marks can	
	lone pair on N (is used to accept the H) / dative bond to H	✓ come from a	
		suitable alagram	
	phenylamine		
	phenylamine has lone pair (partially) delocalised around ring	✓	
	so the electron pair is less easily donated		
	2-phenylethylamine		
	electrons are pushed towards the N / positive inductive eff	ect	
	AW✓		
	so the electron pair is more easily donated		
	$/ H^*$ is more attracted to the NAW \checkmark		
	the electron density is lower on the N (for phenylamine)		
	/ higher (for phenylethylamine) ✓		
	any 6 out of 7	marks	[6]
		,,,,,,,,,	[~]
	quality of written communication		
	at least two sentences with correct spelling, punctuation and	1	
	grammar√		[1]
		[Tota	l: 11]

Qu. No.			Marks
7 (a)	H overlap of p-orbitals ✓ H C H C H	any of the first three marks	
	C—C H above and below the ring ✓	can come from a good	
	(π) electrons are spread / delocalised around the ring \checkmark	diagram	
	C-C bonds are: same length/strength / in between single and do / σ-bonded AW √	uble	[4]
	Quality of written communication mark for correct use of the terms: pi / π and delocalised \checkmark		[1]
(b)	B contains 9.43% H, so moles of C = 7.55, moles H=9.4, so CH ratio is: 1 : 1.25		
	empirical formula = C₄H₅ ✓	allow C ₈ H ₈ to C ₁₁ H ₁₁ as ecf from CH	
	use of M _r and empirical formula to get molecular formula of B = C ₈ H ₁₀ ✓	20 00, <i>m</i> 0, <i>m</i>	
	structure of B = ethylbenzene or any dimethylbenzene eg $\begin{array}{c} & H & H \\ & H & H \\ & C & C & H \\ & H & H \\ & H & H \end{array}$ or ecf for a valid structure from an incorrect M_r \checkmark	correct structure of B gets the 2 nd and 3 rd marks	
	so A = C ₂ H ₅ X / CH ₃ X (depending on their structure) ✓ or ecf from an incorrect aromatic structure of B	X = Cl or Br	[4]
		[Tota	al: 9]

Qu. No.		Marks
0 (0) (i)		
8 (a) (i)	ethyl butanoate 🗸	[1]
(ii)	$CH_3CH_2CH_2COOC_2H_5 + H_2O \longrightarrow CH_3CH_2COOH + C_2H_5OH\checkmark$	
	(allow use of molecular formulae)	[1]
		r.1
()		
(111)	$C_{3}H_{7}COO^{*}Na^{*} + C_{2}H_{5}OH^{*}$ $allow ONa \text{ or just } O^{*},$ $but NOT O_{-}Na$	[4]
		[1]
(b) (i)	one mark for each curly arrow √√	
	OH	[2]
(ii)	movement of an electron pair 🗸	[4]
()		[1]
(iii)	donates a (lone) pair of electrons (to the C=O)√	[1]
(c)	allow any unambiguous structure or name	
	3-methylpentanoic acid 2-methylpentanoic acid Н Н Н Н Н Н Н Н Н Н	
	H - c - c - c - c - c - c - c - c - c -	
	H H H H H H H H H H	
	2,3-dimethylbutanoic acid H CH ₃ H	
	I I I I н—ç—ç—ç—соон	
	H H CH_3 \checkmark	[3]
<u> </u>		
(d)		
	H30 CH3H ✓	[1]
		[1]
(e) (i)	но	
		[1]
(ii)	3 neaks	
(")	areas 1:1:4 √ allow 2:2:8	[2]
	ľTota	l: 14]
		-

2815/01 Trends and Patterns

Mark Scl	heme	Unit Code	Session	Year	Version	
Page 1	of 5	2815/01	January	2008		Final
	ion	2010/01	Exposted answa	2000	Morko	Additional
Quest	ion		Expected answe	ers	warks	guidance
1 (a)		1s ² 2s ² 2p [°] 3s ² 3p [°] filled d-orbital (1	'3d [®] and iron has)	an incompletely	1	Allow [Kr]3d ^b incomplete 3d sub-shell / incomplete d sub-shell
(b)	(i)	[Fe(H ₂ O) ₆] ²⁺ (1)			1	Allow other correct complex ions If answer blank credit can be obtained from (ii)
	(ii)	Octahedral shap dimensions (1); 90° (1)	be with indication	of three	2	Must have at least two wedges, dotted lines or construction lines Allow three dimensions if at least two bond angles of 90° are shown that clearly demonstrate 3D If two different bond angles do not award bond angle mark unless correct 90° and 180° Allow ecf from other complex ions even if they do not contain iron. This may include tetrahedral or square planar arrangements
	(iii)	Ligand donates lone pair / iron electron pair (1)	an electron pair / accepts a lone p ;	/ ligand donates a pair / iron accepts	2	Allow ecf from wrong complex
(c)		$[Fe(H_2O)_2]^{3+} + S^2$	SCN ⁻ \rightarrow [Fe(H ₂)) 	2	
		(1); Yellow / orange	to (blood) red (1))		

Mark Scheme	Unit Code	Session	Year		Version
Page 2 of 5	2815/01	January	2008		Final
Question		Expected answe	rs	Marks	Additional quidance
1 (d)	FeCl₂ gives grea red or orange re Fe ²⁺ (aq) + 2OI 3OH ⁻ (aq) → Fe	en (grey) ppt and ed or brown-red p H ⁻ (aq) → Fe(OH e(OH) ₃ (s) (1)	I FeCl ₃ gives foxy pt (1); I) ₂ (s) / Fe ³⁺ (aq) +	2	Allow solid instead of ppt / use state symbol from equation if ppt not written If give two equations both must be correct Allow equations which give Fe(OH) ₂ (H ₂ O) ₄ or Fe(OH) ₃ (H ₂ O) ₃
(e)	Cr goes from +3 Fe goes from +6	3 to +6 which is of 5 to +3 which is re	xidation (1); eduction (1)	2	Allow one mark for correct identification of all oxidation numbers if other marks not scored
(f)	2FeO₄ ^{∠−} + 10H Correct reactant Balanced (1)	$^{+} \rightarrow 2\text{Fe}^{3+} + 3/$ ts and products (2O ₂ + 5H ₂ O 1);	2	Allow correct multiples
				Total = 14	

Mark Scheme	Unit Code	Session	Year		Version
Page 3 of 5	2815/01	January	2008		Final
Question	I	Expected answe	rs	Marks	Additional
					guidance
2 (a)	2Na⁺(g) + O²-(c Enthalpy change made from its ga	g) → Na₂O(s) (1 e when one mole aseous ions (1)); of solid Na ₂ O is	2	Allow energy released Not energy required Allow ionic compound / ionic solid / salt / ionic lattice State symbols from equation can be used if states missing from definition
(b)	Correct formulae Correct state syn Labelled energy Lattice ent Enthalpy c Atomisatio Atomisatio First and s magnesium First and s (can be lat Six correct (3); Four or five corr Two or three con	e (1); mbols (1); changes change of formation on of magnesium on of oxygen second ionisation m (can be labelle second electron a belled together) ect (2); rrect (1)	on energy of d together) ffinity of oxygen	5	Allow use of acceptable symbols for each enthalpy change eg $\Delta H_{\rm f}$ If arrows missing from cycle penalise once only
(c)	(MgO more exo Oxide ion smalle has a higher cha (1); So oxide ion has magnesium ion attraction (1)	thermic because) er than carbonate arge density than s a stronger attrac / carbonate ion h	ion / oxide ion carbonate ion ction to as a weaker	2	Allow ora Penalise use of incorrect particle only once in this question
(d) (i)	$CaCO_3 \rightarrow CaC$	$+ CO_2(1)$		1	Ignore state symbols
(ii)	Magnesium ion magnesium ion (1); Magnesium ion than calcium ion polarization of th	smaller than calc has a higher chan distorts the carbo r / magnesium ior ne carbonate ion	ium ion / rge density / ora onate ion more n causes more (1)	2	Allow ora Penalise use of incorrect particle only once in this question
				= 12	

Mark Scheme	Unit Code	Session	Year	Version	
Page 4 of 5	2815/01	January	2008		Final
Question	I	Expected answe	ers	Marks	Additional
3 (a)	Colourless to p	urple or (pale) p	bink (1)	1	allow it goes pink / it goes purple not just pink / just purple
(b)	Moles of MnO_4^- Moles of ethane moles of MnO_4^- ; Relative formula ethanedioic acid $\mathbf{x} = 2 / (M_r - 90)$	= 3.81 × 10 ⁻⁴ (1) dioic acid = 9.52 mass = 126 (1) ; ÷ 18 (1)	; 5 × 10 ⁻⁴ (1) / 2.5 × / 0.120 ÷ moles of	4	Allow ecf throughout
(c)	(COO)₂Mg / Mg(OOC) ₂ (1)		1	Allow (COO ⁻) ₂ Mg ²⁺ / Mg ²⁺ (⁻ OOC) ₂
				Total = 6	
4	Structure and E Correct 'dot and Correct 'dot and Correct charges SiCl ₄ – simple m MgCl ₂ – giant ior	Bonding cross' diagram for cross' diagram for – Mg ²⁺ and Cl [−] (olecular / simple nic (1)	or SiCl₄ (1); or MgCl₂ (1): 1); covalent (1);	5	Charges on ions are independent of 'dot and cross' diagram
	Melting Points MgCl ₂ – (strong ions (1); SiCl ₄ – (weak) V dipole-temporary dipole-induced d	electrostatic) attr an der Waals for dipole interaction	action between rces / temporary on / induced (1)	3	Allow ionic bonds / ionic lattice / 'is ionic' (1) Allow intermolecular forces / description of an intermolecular
	Correct use of st the correct force	rong and weak - / bond (1)	- must be linked to		(1)
	Action of water $PCI_5 + 4H_2O \rightarrow$ Steamy fumes p / vigorous reaction $MgCI_2 + aq \rightarrow M$ magnesium ions Makes a colourle	5HCl + H₃PO roduced / acidic on / exothermic (/lg ²⁺ (aq) + 2Cl ⁻ polarises water ess solution / neu	4 (1) solution produced 1) (aq) / dissolves / molecules (1) utral solution (1)	4	Allow any pH between 6 and 7

Mark Scheme	Unit Code	Session	Year		Version		
Page 5 of 5	2815/01	January	2008		Final		
Question	I	Expected answers		Expected answers			Additional
4	Quality of writte Answer must ad at least three of context Hydrolysis Covalent Ionic van der W Intermolec Dipole Electrostat Dissolution Electron Molecule / Lattice Giant Simple Exothermin Intramolec	en communication dress the question the following terr aals ular ic molecular	on n set and include ns in the correct	Total			
				= 13			

2815/02 Biochemistry

Ques No.	tion		Max Mark
1)	(a)	Ribose with attached base ✓ and phosphate ✓. The correct position for attachment of base (position 1) /phosphate (position 5) ✓. Numbers not required if the diagram is clear. A diagram alone is enough. The sugar must be unambiguously ribose in a diagram, not cyclopentane versions.	[3]
	(b)	Find six points from the following:	[7]
		 ① Mention of t-RNA and m-RNA molecules ✓ ② triplets of bases on m-RNA code for each amino acid ✓ ③ Each t-RNA carries amino acid on one end corresponding to base triplet at the other ✓. AW ④ t-RNA attaches to m-RNA using base triplet which is complementary to base triplet on the m-RNA ✓ ⑤ Attachment by hydrogen bonding ✓(No need for number of bonds) ⑥ Hydrogen bonding is between complementary base pairs CG and AU ✓ Details not required. T is incorrect. ⑦ Amino acids are linked into polypeptide at the ribosome in the order prescribed by m-RNA/enzymically ✓. AW throughout. Candidates who describe transcription can earn a max of 4 marks through ecf on points 4,5,6 and 7 above . Marks may be found from diagrams. QWC Correct use of three of the following terms: complementary, hydrogen bonding, ribosome, t-RNA, m-RNA, base triplet, polypeptide ✓ 	
2)	(a)	Condensation ✓	[1]
	(b)	the glycosidic link is 1 β -4 link to left hand glucose/ the sugar involved is β -glucose \checkmark . AW	[1]
	(c)(i)	Using enzyme /use of cellobiase (accept cellulose) \checkmark . Using acid / heating with aqueous acid \checkmark .	[2]
	(ii)	$C_{12}H_{22}O_{11} + H_2O \longrightarrow 2C_6H_{12}O_6 \checkmark$	[1]
	(d)	 Cellobiose has many sites/hydroxyl groups available ✓ for hydrogen bonding to water. ✓ Correct diagram, such as that below, of hydrogen bonding to water (partial charges not needed)is acceptable for the second mark. They may do this on a structure of cellobiose if they wish. eg R- O-HOH₂ Cellulose has many OH groups tied up in glycosidic links ✓ and others are involved in internal hydrogen bonding with adjacent/parallel chains ✓. A good diagram may earn one of these marks. 	[4]

3) (a) (i)	A correct ester group \checkmark . The rest \checkmark . $H_2C \longrightarrow O = C_3H_7$ $H_2C \longrightarrow O = C_3H_7$	[2]
(1)		נין
(iii)	Energy source/storage AW✓. Insulation/protection of organs✓.	[2]
(iv)	van der Waal's attraction ✓ between the non-polar hydrocarbon chains in triglyceride and non-polar solvent molecules ✓. AW.	[2]
(b) (i)	Any four from: High pH means that sidechain amino groups are largely present as $NH_2/unionised\checkmark$. COO ⁻ to COOH is incorrect. This disrupts ionic attraction \checkmark between COO ⁻ and $NH_3^+\checkmark$ (in tertiary structure), changing the shape of the active site. ✓. Denaturation. ✓	[4]
b (ii)	Sodium butanoate/ butanoate ions ✓. Accept a clear structure unless accompanied by the wrong. Not soap.	[1]
(C)	ristearin does not fit active site so well ✓. AW.	[1]
(d) (i)	An inhibitor that competes for/binds at the active site. \checkmark	[1]
(ii)	Orlistat has similar ester group(s) ✓ which can bind(at active site) using dipole:dipole/hydrogen ✓ Or hydrocarbon tails ✓ to triglycerides which can bind(at active site) using van der Waals forces/IDID ✓. AW	[2]
(e)	To hydrolyse/dissolve/break down fats/ triglycerides/lipid ✓. AW	[1]

4)	(a)	The sequence of amino acids in a peptide/protein chain. \checkmark	[1]
	(b)	Diagram should show helical chain with C=O and NH groups In the chain \checkmark , hydrogen bonded C=O HN \checkmark	[2]
	(c) (i)	Contains amide/peptide links in the chain/polyamide/involves 2-aminoacids✓	[1]
	(ii)	No H on N for hydrogen bonding. ✓ AW	[1]
	(iii)	 Any two points ✓ . AW Sidechains not attached to the 2-carbon.(Accept attached to N) Sidechains in synthetic compound not found in natural protein No chiral centres. Only 2 types of R group rather than 20. Regular repeating structure in this polymer not in protein. 	[2]
	(iv)	By van der Waals attraction ✓ between non-polar groups such as the benzene rings ✓. Or dipole-dipole attraction between the ether groups. Mark the first answer if they offer two alternatives, but max 1 if the correct answer comes second. No marks for three or more answers.	[2]

2815/04 Methods of Analysis and Detection

i paper: mobile = solvent/water ✓ stationary = solvent/water ta i ta i tapped in paper /cellulose ✓ separation = adsorption if either SiO ₂ /Al ₂ O ₃ or partition if cellulose used as stationary phase✓ glc: mobile = (carrier) inert gas /He/ Ar/ N ₂ ✓ separation = partition ✓ 2 ii Rr = distance moved by solute/spot/component distance moved by solvent 1 iii Rr = distance moved by solute/spot/component distance moved by solvent 1 iii A iii 1 iii adsorption indicated unambiguously ✓ 1 iii attempts to use areas ✓ calculates the areas of all three peaks eg 0.5 x 20 x 4 + 30 x 2 x 0.5 + 10 x 2 x 0.5 or use of mm measurements from graph or ratio of 40 :30:10 or 1.6: 1.5: 0.4 × y 3 tated % = 37.5 - 43% (allow max. of 4 sig. figs) ✓ 10	Question	Expected Answers	Max Mark
glc: mobile = (carrier) inert gas /He/ Ar/ N ₂ ✓ separation = 2 ii $R_r = \underline{distance moved by solute/spot/component}$ 2 iii $R_r = \underline{distance moved by solvent}$ 1 iii 1 1 <i>distance moved by solvent</i> 1 <i>distance moved by so</i>	1a i	paper : mobile = solvent/water \checkmark stationary = solvent/water trapped in paper /cellulose \checkmark <u>tlc</u> : stationary = SiO ₂ /Al ₂ O ₃ or cellulose \checkmark separation = adsorption if either SiO ₂ /Al ₂ O ₃ or partition if cellulose used as stationary phase \checkmark	2
ii $R_r = \underline{distance moved by solute/spot/component}}{distance moved by solvent}$ 1 iii 1 iii 1 iii 1 I 1 I 1 I 1 I		glc : mobile = (carrier) inert gas /He/ Ar/ $N_2 \checkmark$ separation = partition \checkmark	2
ii $R_r = \underline{distance moved by solute/spot/component}{distance moved by solvent}$ 1 iii 1 iii \checkmark iii \checkmark A \bullet <tr< th=""><th></th><th></th><th>2</th></tr<>			2
iii 1 A 2^{nd} spot up indicated unambiguously \checkmark b i component A because it is the first to emerge/shortest time from injection/shortest retention time \checkmark ii attempts to use areas \checkmark calculates the areas of all three peaks eg 0.5 x 20 x 4 + 30 x 2 x 0.5 + 10 x 2 x 0.5 or use of mm measurements from graph or ratio of 40 :30:10 or 1.6: 1.5: 0.4 \checkmark $\%$ = 37.5 – 43% (allow max. of 4 sig. figs) \checkmark	ii	R _f = <u>distance moved by solute/spot/component</u> distance moved by solvent ✓	1
bicomponent A because it is the first to emerge/shortest time from injection/shortest retention time \checkmark 1iiattempts to use areas \checkmark calculates the areas of all three peaks eg 0.5 x 20 x 4 + 30 x 2 x 0.5 + 10 x 2 x 0.5 or use of mm measurements from graph or ratio of 40 :30:10 or 1.6: 1.5: 0.4 \checkmark % = 37.5 - 43% (allow max. of 4 sig. figs) \checkmark 3	iii	distance moved by solvent A → → → → → → → → → → → → → → → → → →	1
ii attempts to use areas \checkmark 3 calculates the areas of all three peaks eg 0.5 x 20 x 4 + 30 x 2 x 0.5 + 10 x 2 x 0.5 or use of mm measurements from graph or ratio of 40 :30:10 or 1.6: 1.5: 0.4 \checkmark % = 37.5 - 43% (allow max. of 4 sig. figs) \checkmark	b i	component A because it is the first to emerge/shortest time from injection/shortest retention time \checkmark	1
	ii Total	attempts to use areas \checkmark calculates the areas of all three peaks eg 0.5 x 20 x 4 + 30 x 2 x 0.5 + 10 x 2 x 0.5 or use of mm measurements from graph or ratio of 40 :30:10 or 1.6: 1.5: 0.4 \checkmark % = 37.5 - 43% (allow max. of 4 sig. figs) \checkmark	3

Que: No.	stion	Expected Answers	Max I	Mark
2a	i	¹³ C ✓	1	
	ii	$n = \frac{M+1 \times 100}{M \times 1.1}$ i.e. Use of M/M + 1 \checkmark	2	
		= 4.2 x 100 = 4		
		95.3 x 1.1 ✓		
		(So 4.4 carbons = 1 mark)		
	iii	$M_{\rm r}$ = 70 (from mass spectrum) \checkmark	3	
		contains 4 Cs and an O = 48 + 16 = 64 \checkmark		
		(70 -64 = 6 Hs) hence formula = $C_4H_6O \checkmark$		
b		CH ₃ CH=CHCHO OR		
		H_3C H C C H C C H C		
		н сно ✓	1	
С		(A structural feature within an organic molecule which) absorbs UV/visible/both UV and visible radiation / light \checkmark	1	
d		more adjacent/linked/across molecule chromophores/delocalization of electrons, therefore more <u>conjugation</u> ✓	3	
		decreases energy gap/absorbs at lower energy/ absorbs at longer wavelength/ absorbs at lower frequency√		
		more likely to absorb in visible region ✓		
е		ues f=c/ λ to calculate frequency \checkmark or E = hc/ λ 3.23 x 10 ⁻¹⁹ (J) \checkmark	2	
			Total	13

Question No.	Expected Answers	Max N	lark
3a	restriction enzymes ✓	1	
b i	DC) voltage applied / Potential difference (AC = CON) OR reference to buffer \checkmark The fragments are attracted to the positive electrode/ all the fragments are negative \checkmark	2	
ii	separation depends on the fragments' mass \checkmark and charge \checkmark	2	
C	Two from: It makes the X ray film fog or it exposes the x ray film ✓ Because it is radioactive ✓ Stick to/ exchanges with mini-satellite sequences of the DNA fragments (AW) ✓	2	
d	F1 - any three matching bands ✓	1	
	•	Total	8

Question No.	Expected Answ	vers			Max M	/ ark
4a	Infra-red:					
	Both have C=O within 1680–1750 cm ⁻¹ \checkmark Both have C–O within 1000–1300 cm ⁻¹ \checkmark X and Y have O–H in range 2500–3300cm ⁻¹ / broad Only Y has an absorption at 3100–3500 cm ⁻¹ for the N–H \checkmark Both have different fingerprint regions \checkmark					
	Mass spec:			max = 4		
	X and Y have dif X and Y have dif Suitable sugges eg CH ₃ CH ⁺ at 28 at 73 \checkmark Suitable sugges eg X has CH ₃ CH Y has H ₂ NNCH ⁺ at 72 or NH ₂ ⁺ at In last 2 marks p max of 1 mark to	fferent <i>M</i> peaks, fferent ratios for tions about simil 3, COOH ⁺ at 45, tions about diffe ICH_3^+ at 43 or (C at 29 or H ₂ NCH 16 \checkmark positive charge is be awarded	X == 88 and Y = the $M : M + 1$ pe ar fragments CHCOOH ⁺ at 5 rent fragments CH ₃) ₂ CHCO ⁺ at 7 CH ₃ ⁺ at 44 or Cl s needed once o	= 89 ✓ eaks ✓ 8, CH ₃ CHCOOH ⁺ 71 H ₃ (NH ₂)CHCO ⁺ on a fragment, or	8	
b	Mark vertically	01.16	0.1111			
		Shift	Splitting	Relative peak		
		3.3 - 4.3	singlet	3		
		2.0 - 2.9	quartet	2		
	СПЗ-С-	0.7 - 1.0		3		
		•	•	•	3	
QWC	Uses two correc wavenumber, at cm ⁻¹ , <i>m</i> / <i>e</i>	t scientific terms psorption, molec	such as fingerp ular ion or correc	rint region, ct units such as	QWC	1
					Total	12

2815/06 Transition Elements

Mark Scheme	Unit Code	Session	Year	Version		
Page 1 of						
Abbreviations,	/ = alternative	and acceptable and	swers for the same r	marking point		
annotations and	; = separates	marking points	- f			
conventions	NOT = answers w	nich are not worthy	of credit			
Used in the	() = words write= (underlining	a) key words which	must be used to da	in credit		
Mark Scheme	ecf = error carried forward					
	AW = alternative	wording				
	ora = or reverse	argument				
Question	Expected Answer	S		Marks		
1 (a)	(+)3			1		
(b)	Two lone pairs of e	electrons /e / co-ordinate bon	ds (with a central	1		
	metal ion)			1		
(c)	Geometric / cis and Cis and trans isom convention as show	d trans ers drawn using an wn.	appropriate 3-d	1 2		
	Optical Cis isomer chosen Two non superimp	osable mirror image	s drawn using an	1 1		
(d)	(ignore any charge	s)	=)	1		
(0)	Green (accept yell	ow-green / blue-gree	en) (and vellow) /	1		
	green (and yellow)	is transmitted/reflec	ted.	Total: 11		

Mark Scheme	Unit Code	Session	Year	Version
Page 2 of				
Abbreviations, annotations and conventions used in the Mark Scheme	 / = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which <u>must</u> be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument 			
Question	Expected Answer	<u> </u>		Marke
2 (a)	Chromium forms of	s xide on surface		1 IVIAI NO
2 (0)	Oxides are impervi reacting with water (do not credit chror	ous to water and air and/or oxygen nium plating)	r / prevent iron	1
(b)	Green / violet			1
(c) (i)	Orange to yellow			1
(ii)	Acid / H ⁺ combines Equilibrium moves Accept equation sh alternative with sui	with OH⁻ to left to produce m nowing H⁺ reacting w table explanation	ore OH⁻ vith CrO₄²⁻ as an	1 1
(d) (i)	$3Mn^{2+} + Cr_2O_7^{2-} + 2$ Correct 3:1 ratio Balanced with no e	$2H^+ \rightarrow 3MnO_2 + 2C$	Cr ³⁺ +H₂O O cancelled	1 1
(ii)	E ^e for reaction is + system is less posi	0.10 V / is positive / tive so it will supply	the manganese electrons ora	1
(iii)	Activation energy is rate of reaction is to ora	s too large / not star oo slow / E ^e for reac	idard conditions/ tion is too small	1
				Total: 10

Mark Scheme	Unit Code	Session	Year	Version
Page 3 of				
Abbreviations,	/ = alternative	and acceptable and	swers for the same r	narking point
annotations and	; = separates	marking points		
conventions	NOT = answers w	hich are not worthy	of credit	
used in the	() = words whi	ch are not essential	to gain credit	in anadit
Mark Scheme	ecf = error carrie	d forward	must be used to ga	
	AW = alternative	wording		
	ora = or reverse	argument		
Question	Expected Answer	S		Marks
3 (a)	Emf / voltage / pote	ential difference of a	cell	1
	Comprising a half of	cell combined with a	standard	4
	nydrogen electrode	erocouro 100kDo /	1 atmoonhoro /105	1
	Pa Concentration	$1 \text{ mol dm}^{-3} / 1 \text{ M}$ (all	3 needed)	1
			o necucu)	I
(b) (i)	Solution A – 1M H	CI / 0.5M H ₂ SO ₄		1
	Solid B – platinum	/ graphite (allow car	bon)	1
			· •	
(ii)	Arrow on wire (or w	very close to wire) po	binting from	4
	nydrogen nait ceil i	$0.5_{2}O_{8} / 5O_{4}$ hai	r cell	ſ
(iii)	$S_2O_2^2 + H_2 \rightarrow 2S_2$	O₄²- + 2H⁺		
(,	Correct species (al	low electrons on eit	her / both sides)	1
	Balanced (no elect	rons)	,	1
,				
(C)	$M_{\rm r} \text{ of } Na_2S_2O_8 = 23$	8.2		1
	M_r of $Na_2SO_4 = 142$	2.1 C. O. and 14.21 m of		1
	1050 23.829 01 Na2 (allow 1 mark for s	S_2O_8 and 14.2 by 01	$10a_250_4$	Ι
		aggesting 0.1 moles	or caon reagent)	
(d)	E ^e will increase			1
	Equilibrium will shit	ft from left to right fo	r S ₂ O ₈ ²⁻ / SO ₄ ²⁻	1
	(allow equilibrium v	vill move towards pr	oducts)	
				Total: 13

Page 4 ofImage: Constraint of the same marking point is anotations, and conventions used in the Mark Scheme/ = alternative and acceptable answers for the same marking point is more answers which are not worthy of creditMark SchemeNOT = answers which are not worthy of credit////> = words which are not essential to gain creditMark SchemeExpected AnswersMarksQuestionExpected AnswersMarksQuestionExpected AnswersMarks4 V^{2+} +2lilac / violet / purple $\sqrt{3^+}$ +3green $\sqrt{0^2^+}$ +4blue $\sqrt{0^2^+}$ +4blue $\sqrt{0^2^+}$ +4blue $\sqrt{0^2^+}$ +4blue $\sqrt{0^2^+}$ +4blue $\sqrt{0^2^+}$ +4correct colours scores 2.deduct 1 mark for each incorrect formula up to a max of 2.2. Deduct 1 mark for each incorrect colour up to max of 2Colours linked to oxidation state)1For reduction:1Choses higher oxidation state ion going to lower oxidation state ion1Suitable balanced equation1 $2VO_2^+ + 4H^+ Zn \rightarrow 2VO^{2+} + 2H_2O + Zn^{2+}$ 1Alternatives: $VO_2^+ \rightarrow V^3$, $VO_2^+ \rightarrow V^{2+}$, $V^3 + 2V_2$ etcFor roxidation:1Suitable balanced equation:1Suitable balanced equation:1Suitable balanced equation:1Suitable balanced equation:1Suitable balanced equation:1Suitable balanced equation:1Suitable balanced equation: <th>Mark Scheme</th> <th>Unit Code</th> <th>Session</th> <th>Year</th> <th>Version</th>	Mark Scheme	Unit Code	Session	Year	Version
Abbreviations, annotations and conventions used in the Mark Scheme/ = alternative and acceptable answers for the same marking point = separates marking points NOT = answers which are not worthy of credit = words which are not essential to gain credit = (underlining) key words which must be used to gain credit eff = error carried forward AW = alternative wording ora = or reverse argumentMarksQuestionExpected AnswersMarks4 V^{t^*} + 211ac / violet / purple $V_0^{2^*}$ + 4Marks5 $V_0^{2^*}$ + 4blue blue $V_0^{2^*}$ + 4Marks4 V^{t^*} V_0^2 + 4blue blue $V_0^{2^*}$ + 4Marks6 $V_0^{2^*}$ + 4blue blue $V_0^{2^*}$ + 4Marks6 $V_0^{2^*}$ + 710ac / 20ac	Page 4 of				
Abbreviations, annotations and conventions used in the Mark Scheme/ = alternative and acceptable answers for the same marking point = separates marking points words which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit = error carried forward AW = alternative wording ora = or reverse argumentMarksQuestionExpected AnswersMarks4 V^{2+} V^{2+} + 3 green VO_2^{2+} VO_3^{2+} + 4 blue VO_2^{2+} VO_3^{2+} + 5 vellow Correct formulae scores 2, correct colours scores 2. deduct 1 mark for each incorrect formula up to a max of 2. Deduct 1 mark for each incorrect colour up to max of 2 (colours linked to oxidation state)4For reduction: Choses higher oxidation state ion suitable balanced equation $2VO_2^{2+} + 2H_2O + 2n^{2+}$ Alternatives : $VO_2^{2+} + 4H^{+} + 2n \rightarrow 2VO^{2+} + 2H_2O + 2n^{2+}$ Alternatives: $VO_2^{2+} + 4H^{+} \rightarrow 5VO_2^{2+} + 3Mn^{2+} + 2H_2O$ Alternatives: $VO_2^{2+} + V^{3+} \rightarrow VO_2^{2+}, V^{3+} \rightarrow VO_2^{2+}$ etc For oxidation Suitable balanced equation: $5V^{2+} + 3MnO_4 + 4H^{+} \rightarrow 5VO_2^{+} + 3Mn^{2+} + 2H_2O$ Alternatives: $V^{2+} \rightarrow V^{2+}, V^{3+} \rightarrow VO_2^{+}, V^{3+} \rightarrow VO_2^{+}$ etc Ero oxidation state ion. Suitable balanced equation: $5V^{2+} + 3MnO_4 + 4H^{+} \rightarrow 5VO_2^{+} + 3Mn^{2+} + 2H_2O$ Alternatives: $V^{2+} \rightarrow V^{2+}, V^{3+} \rightarrow VO_2^{+}, V^{3+} \rightarrow VO_2^{+}$ etc Ero oxidation state ion. Suitable balanced equation: $5V^{2+} + 3MnO_4 + 4H^{+} \rightarrow 5VO_2^{+} + 3Mn^{2+} + 2H_2O$ Alternatives: $V^{2+} \rightarrow V^{2+}, V^{3+} \rightarrow VO_2^{+}, V^{3+} \rightarrow VO_2^{+}$ etc Ero oxidation state ion. Suitable balanced equations can score both marks in each of the above Vanadium (V) oxide (V_2O_5 is the					
QuestionExpected AnswersMarks4 V^{2^+} +2lilac / violet / purple V^{3^+} +3green yreen $VO_2^{2^+}$ +4blue $VO_2^{2^+}$ $VO_2^{2^+}$ +4 $VO_2^{2^+}$ VO_3^- +5yellow Correct formula escores 2, correct colours scores 2. deduct 1 mark for each incorrect formula up to a max of 2. Deduct 1 mark for each incorrect colour up to max of 2 (colours linked to oxidation state)4For reduction: Choses higher oxidation state ion going to lower oxidation state ion Suitable balanced equation $2VO_2^+ + 4H^+ + Zn \rightarrow 2VO^{2^+} + 2H_2O + Zn^{2^+}$ Alternatives : $VO_2^+ \rightarrow V^{3^+}, VO_2^+ \rightarrow V^{2^+}, V^{3^+} \rightarrow V^{2^+}$ etc For oxidation: Choses lower oxidation state ion going to higher oxidation state ion. Suitable balanced equation: $5V^{2^+} + 3MnO_4^- + 4H^+ \rightarrow 5VO_2^+ + 3Mn^{2^+} + 2H_2O$ Alternatives: $V^{2^+} \rightarrow V^{3^+}, V^{3^+} \rightarrow VO_2^+ V^{3^+} \rightarrow VO_2^+$ etc NB: correct balanced equations can score both marks in each of the above Vanadium (V) oxide / V_2O_5 is the catalyst for the Contact Process / making sulphuric acid $2SO_2 + O_2 = 2SO_3$ Quality of written communication: One mark awarded for correct spelling, punctuation and1	Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative a ; = separates n NOT = answers wh () = words which = (underlining ecf = error carried AW = alternative v ora = or reverse a	and acceptable answe narking points nich are not worthy of o n are not essential to o n key words which <u>mu</u> d forward wording argument	rs for the same markin predit gain credit <u>ist</u> be used to gain cre	ng point edit
4 $V_{2^{+}}^{2^{+}}$ +2 lilac / violet / purple $V_{3^{+}}^{2^{+}}$ +3 green $VO_{2^{+}}^{2^{+}}$ +4 blue $VO_{2^{+}}^{2^{+}}$ +4 blue $VO_{2^{+}}^{2^{+}}$ +4 blue $VO_{2^{+}}^{2^{+}}$ +4 blue $VO_{2^{+}}^{2^{+}}$ +5 yellow Correct formulae scores 2, correct colours scores 2. deduct 1 mark for each incorrect colour up to max of 2 (colours linked to oxidation state) For reduction: Choses higher oxidation state ion going to lower oxidation state ion $2VO_{2^{+}}^{2^{+}}$ +4H ⁺ +2n → $2VO^{2^{+}}$ + 2H ₂ O + Zn ²⁺ Alternatives : $VO_{2^{+}}^{2^{+}}$ +3Mn $O_{2^{+}}^{2^{+}}$ > $V^{2^{+}}$ etc For oxidation: Choses lower oxidation state ion going to higher oxidation state ion. Suitable balanced equation: $5V^{2^{+}}$ + 3Mn $O_{4^{-}}^{2^{+}}$ +4H ⁺ → $5VO_{2^{+}}^{2^{+}}$ +3Mn ²⁺ + 2H ₂ O Alternatives: $V^{2^{+}} \rightarrow V^{3^{+}}$, $V^{3^{+}} \rightarrow VO_{2^{+}}^{2^{+}}$ etc NB: correct balanced equations can score both marks in each of the above Vanadium (V) oxide / $V_{2}O_{5}$ is the catalyst for the Contact Process / making sulphuric acid $2SO_{2^{+}} + Q_{2^{-}} = 2SO_{3}$ Quality of written communication: One mark awarded for correct spelling nunctuation and	Question	Expected Answer	Ś		Marks
grammar in at least two complete sentences 1 Total: 11	4	V ²⁺ +2 V ³⁺ +3 VO ²⁺ +4 VO ₂ ⁺ / VO ₃ ⁻ +5 Correct formulae s deduct 1 mark for e 2. Deduct 1 mark for e	Iilac / violet / purple green blue yellow cores 2, correct color each incorrect formut or each incorrect color exidation state) dation state ion going equation n → 2VO ²⁺ + 2H ₂ C → V ²⁺ , V ³⁺ → V ²⁺ etc ation state ion going equation: 4H ⁺ → 5VO ₂ ⁺ + 3 $(O^{2^+}, V^{3^+} \rightarrow VO_2^+ etc)$ ed equations can sc e / V ₂ O ₅ is the cataly sulphuric acid SO ₃ ommunication: d for correct spelling t two complete sente	purs scores 2. la up to a max of lour up to max of 2 g to lower $D + Zn^{2+}$ to higher $Mn^{2+} + 2H_2O$ core both marks in yst for the Contact , punctuation and ences	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2816/01 Unifying Concepts in Chemistry/ Experimental Skills 2 Written Paper

Question		Max Mark
1) (a)(i)	The contribution of a gas to the total pressure in a gas mixture/	[1]
(ii)	the pressure a gas (in a mixture) would exert by itself ✓	[1]
	488.60/489 kPa ✓	[,]
(b)(i)	$K_p = \frac{p CH_3 OH(g)}{p CO(g) \times p H_2(g)^2} \checkmark$ state symbols not required	[1]
(ii)	$K_p = \frac{488.6}{3.80 \times 7.60^2} = 2.226 / 2.23 \checkmark \text{ kPa}^{-2} \checkmark$	[2]
	Common ecfs from (a)(ii): $3.8 \rightarrow 0.0173$	
	$481 \longrightarrow 2.19$ $125 \longrightarrow 0.570$ $11.4 \longrightarrow 0.0519$	
(C)	Higher Pressure Equilibrium \longrightarrow right as fewer moles on right hand side \checkmark	[3]
	Faster rate as concentration increases/causing more collisions√	
	High pressures/temperatures are expensive (to generate) /cause potential safety problems (with walls of containers) ✓	
	Higher Temperature Faster ratefrom more energetic/successful collisions: ✓	[3]
	Equilibrium \rightarrow left because Kp decreases \checkmark	
	Idea of a high enough temperature for reasonable rate without compromising equilibrium yield \checkmark	
	Catalyst (Speeds up reaction) lowering activation energy/ less time to reach equilibrium (saving production costs or energy)/	[1]
	allows reaction to take place at a lower temperature/using less energy ✓	\rightarrow 6 max
	Quality of Written Communication organises relevant information clearly and coherently, using specialist vocabulary where appropriate and linking at least one change with a reason ✓	[1]
		12

2816/01

2)	(a)(i)	H⁺(aq):	[2]
,	()()	Exp 3 has 2 x [H ⁺ (aq)] as Exp 1 and rate has increased by	
		$4\checkmark$	
		so order – z with respect to th (aq) *	[2]
		BrO₃⁻(aq):	•••
		Exp 2 has 2 x [BrO ₃ ⁻] as Exp 1 and rate increases by 2 \checkmark so order = 1 with respect to BrO ₃ ⁻ (aq) \checkmark	[0]
		Br⁻(aɑ) [.]	[2]
		Exp 4 has 3 x [BrO ₃ ⁻ (aq)] as Exp 1 which increases rate by 3	
		and Exp 4 has 2 x [Br ⁻ (aq)] as Exp 1	
		so order = 1 with respect to $Br^{-}(aq) \checkmark$	
	<i>(</i> '')	rate = $k [H^+]^2 [BrO_3^-] [Br^-] \checkmark$	[1]
	(11)		
	(iii)	$rate = 1.68 \times 10^{-5}$	
	(111)	$^{-}$ [H ⁺] ² [BrO ₃ ⁻] [Br ⁻] / 0.30 ² x 0.05 x 0.25	[4]
		= 0.0149/0.015 \checkmark units: dm ⁹ mol ⁻³ s ⁻¹ \checkmark	
		answer to 2 or 3 sig figs ✓	
		(calculator: 0.0149333333)	
		mark consequentially from (a)(ii)	
		common ecfs:	
		From expt 1: rate = $k [H^{\dagger}]^2 [BrO_3^{-}] \longrightarrow 0.00373 \text{ dm}^6 \text{ mol}^{-2} \text{ s}^{-}$	
	(b)	gradient at t=0/start ✓	[1]
	(C)	Overall equation has different stoichiometry/number of moles	[1]
		to rate equation ✓	
			13

3)	(a)	partially dissociates/ionises ✓	[1]
	(b)	$CH_3COO^-(Na^+)$ /(sodium) ethanoate \checkmark	[1]
	(C)	Equations with H_2 and CO_2 produced \checkmark	[3]
		Na ₂ CO ₃ + 2CH ₃ COOH \longrightarrow 2CH ₃ COONa + CO ₂ + H ₂ O \checkmark	
		$Mg + 2CH_3COOH \longrightarrow (CH_3COO)_2Mg + H_2 \checkmark$	
	(d)(i)	amount of NaOH used = 0.200 x 22/1000 = 4.4 x 10 ⁻³ / 0.0044 ✓	[2]
		concentration = 0.0044 x 1000/25 = 0.176/0.18 mol dm ⁻³ \checkmark	
	(ii)	metacresol purple because	[1]
		indicator has a pH range coinciding with steepest part of titration curve / 7-10 / equivalence point \checkmark	
	(e)	$n(CH_3COOH) = n(C_2H_5OH) = 79.2/46 = 1.72 \checkmark$ (calculator: 1.72173913)	[2]
		[CH ₃ COOH] = 1.72 x 1000/750 = 2.29 mol dm ⁻³ ✓ (calculator: 2.295652174)	[4]
		$\mathcal{K}_{a} = \frac{[H^{+}] [CH_{3}COO^{-}]}{[CH_{3}COOH]} \checkmark = \frac{[H^{+}]^{2}}{[CH_{3}COOH]}$	[4]
		[H ⁺] = $\sqrt{(K_a \times [CH_3COOH])}$ = $\sqrt{(1.70 \times 10^{-5} \times 2.29)}$ ✓	
		= 6.24 x 10 ⁻³ mol dm ⁻³ ✓ (calculator: 6.247086277 x 10 ⁻³)	
		pH = –log(6.24 x 10 ⁻³) = 2.20/2.21 ✓ (calculator: 2.204322496)	
		No square root \rightarrow 4.41: does not score 4th and 5th marks No scaling from 750 cm ³ \rightarrow 2.27: does not score 2nd mark Use of 60 instead of 46 \rightarrow 2.26: does not the 1st mark	

(f)(i)	CH ₃ COONa / NaOH / Na ✓	[1]
(ii)	equilibrium: CH_3COOH $CH_3COO^- + H^+ \checkmark$	
	$\begin{array}{l} CH_{3}COOH \ reacts \ with \ added \ alkali \ / \\ CH_{3}COOH \ + \ OH^{-} \rightarrow / \\ added \ alkali \ reacts \ with \ H^{+} \ / \ H^{+} \ + \ OH^{-} \rightarrow H_{2}O\checkmark \\ \rightarrow H_{2}O \ + \ CH_{3}COO^{-} \ / \ Equil \rightarrow right \ (to \ counteract \ change) \\ \checkmark \end{array}$	
	CH ₃ COO [−] reacts with added acid or H ⁺ \checkmark Equil \rightarrow left (to counteract change) \checkmark Large amounts/reservoirs/ of HA and A [−] \checkmark	[5 max]
		20

4)	(a)	mass of H₂S per day = 100 x 10 ⁶ x 1.80/100 = 1.80 x 10 ⁶ g / 1.8 tonnes ✓	[3]
		$n(H_2S)$ per day = 1.8 x 10 ⁶ /34.1 = 5.3/5.28 x 10 ⁴ \checkmark (calculator: 52785.92375)	
		Same number of moles H ₂ SO ₄ formed, mass H ₂ SO ₄ = 5.28 x 10^4 x 98.1 = 5.18 x 10^6 g / 5.18 tonnes \checkmark	
	(b)	$\begin{array}{rcl} \text{step 1} & 2H_2S + 3O_2 & \longrightarrow 2SO_2 + 2H_2O \ / \\ H_2S + O_2 & \longrightarrow SO_2 + H_2 \checkmark \\ \text{step 2:} & 2H_2S + SO_2 & \longrightarrow 3S + 2H_2O \ / \\ & 4H_2S + 2SO_2 & \longrightarrow 6S + 4H_2O \checkmark \end{array}$	[3]
		overall: $6H_2S + 3O_2 \longrightarrow 6S + 6H_2O /$ $2H_2S + O_2 \longrightarrow 2S + 2H_2O \checkmark$	
	(c)	In step 1, S (oxidised) from -2 to +4 \checkmark In step 2, S in H ₂ S (oxidised) from -2 to 0 \checkmark S in SO ₂ (reduced) from +4 to 0 \checkmark	[3]
	(d)	$H_2S + CO_3^{2-} \Rightarrow HCO_3^- + HS^- \checkmark$ acid 1: H_2S ; base 1: $HS^- \checkmark$ acid 2: HCO_3^- ; base 2: $CO_3^{2-} \checkmark$	[3]
	(e)	CH ₃ CH ₂ CH ₂ CH ₂ SH ✓ A reagent chosen that would react with a butane-1-thiol (eg O ₂ , Na, alcohol, HBr, H ₂ SO ₄ , PCl ₅) ✓ correct equation for chosen reagent ✓	[3]
			15

2816/03 Unifying Concepts in Chemistry/Experimental Skills 2 Practical Examination

PLAN: Skill P 16 marks (out of 19 available)

T The redox titration (8 marks)

T1	Makes up a known solution of hydrated iron(II) salt Weighing, use of distilled water and volumetric flask must all be specified.			
T2	Pipette a known volume of solution iron(II) salt into a conical flask and acidifies. Sulphuric acid must be specified	[1]		
Т3	Aqueous KMnO4 (of specified/known concentration) used in the burette Concentration used must be between 0.01 and 0.1 mol dm-3	[1]		
T4	Correct end colour (allow pink or light purple)	[1]		
Т5	Titrate until two consistent titres are obtained	[1]		
Т6	Equation for redox reaction involved $MnO_4^- + 8H^+ + 5Fe^{2+} \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_2$	[1]		
Т7	Calculation (using titration data) of the Mr of hydrated salt.	[1]		
Т8	Calculation of the value of \mathbf{x} This calculation may also be shown as part of the answer to strand G This mark requires the actual Mr of anhydrous salt (= 152 or 151.9) to be quoted	[1]		
G	Gravimetric method involving precipitation (7 marks)			
G1	Use known mass of iron(II) salt and dissolve in distilled water	[1]		
G2	Add excess of aqueous barium chloride or sodium hydroxide etc.	[1]		
G3	Filter mixture using <u>pre-weighed</u> filter paper or centrifuge the mixture in pre-weighed tube	[1]		
G4	 Two accuracy precautions calculation of quantity (mass <u>or</u> volume/concentration) of precipitant needed stir mixture or heats[gently] to coagulate precipitate (<i>reason needed</i>) use fine grade filter paper or uses reduced pressure/Buchner filtration wash residue with [distilled] water weigh residue to constant mass [to ensure dryness] repeat whole experiment to obtain consistent results 	[1]		

2816	/03 Mark Scheme	January 2008
G5	Dry residue [and filter paper] in an oven/desiccator and weigh it	[1]
G6	Equation/ionic equation for the precipitation reaction	[1]
G7	Show clearly how relative formula mass (or x) can be calculated from mass Calculation must show the Mr of solid precipitated: $BaSO4 = 233$: $Fe(OH)2$	a data [1] ? = 89.8
S	Safety, sources and qwc (4 marks)	
S1	Hazard and safety measure stated for barium chloride or sodium hydroxide	. [1]
S2	Two sources quoted in the text or at end of Plan. Book references must have chapter or page numbers Internet reference must go beyond the first slash of web address	[1]
S3	QWC : text is legible <i>and</i> spelling, punctuation and grammar are accurate Accept not more than five different error types in legibility, spelling, punctua	[1] tion or grammar.
S4	 QWC: information is organised clearly and coherently Is a word count given and within the limits 450 – 1050 words? 	[1]

- Is scientific language used correctly? (One error is allowed without penalty). Is the description of the two experiments logical and clear? ٠
- •

Mark Scheme

Mark Scheme: A2 Practical Test (Part B)

Part 1: Page 3 Skill I - 14 marks

Mass readings

- Both mass readings must be listed
- All masses should be recorded to two (or three) decimal places
- Units, g, must be shown (somewhere)
- Subtraction to give mass of G must be correct.
- Labelling of masses must have minimum of the words "bottle"/"container" (aw)

Presentation of titration data

(All four bullets correct \rightarrow 2 marks: If three points correct \rightarrow 1 mark)

- Correctly labelled table (initial, final and difference aw) used to record burette data A table grid (or tabular format) must be used, with lines drawn.
- All accurate burette data (including 0.00) are quoted to 0.05 cm³
- All subtractions are correct (these must be checked)
- Units, cm³ or ml, must also be given (once in or alongside the table is sufficient).

Self-consistency of titres

• Both of the candidate's accurate titres (as used for the mean) should agree within 0.10 cm³.

Mean titre correctly calculated

Use of the trial is acceptable if it closer than one of the "accurate" readings

<u>Accuracy</u> – [7 marks]

Work out, using the steps below, what the <u>adjusted candidate's titre</u> (T) would have been if the candidate had used the same mass of Y as the supervisor.

Adjusted titre, T = candidate's mean titre x ^{supervisor's mass}/_{candidate's mass}

<i>T</i> is within 2.00 cm ³ of mean supervisor's value	[1]
<i>T</i> is within 1.50 cm ³ of mean supervisor's value	[2]
<i>T</i> is within 1.00 cm ³ of mean supervisor's value	[3]
<i>T</i> is within 0.80 cm ³ of mean supervisor's value	[4]
<i>T</i> is within 0.60 cm ³ of mean supervisor's value	[5]
<i>T</i> is within 0.40 cm ³ of mean supervisor's value	[6]
\boldsymbol{T} is within 0.25 cm ³ of mean supervisor's value	[7 marks]

Spread penalty

("Spread" is defined by the titres used by the candidate to calculate the mean) If the closest titres have a spread > 0.40 cm^3 , deduct 1 mark from the accuracy mark. If the closest titres have a spread > 0.60 cm^3 , deduct 2 marks.

Handling of chemicals

[2 marks]

Any	y two points from	
•	Add a suitable named reducing agent	[1]
•	Use a dilute solution of the reducing agent	[1]
•	Wash with <u>plenty</u> of water	[1]

[2]

[1]

[1]

[1]

Mark Scheme

January 2008

Part	2: Pa	ges 4 + 5	Skill A	[12 marks]
Ansv	vers to	o (a) and (c) must	be correctly expressed to 3 sig fig.	
(a)	<i>M</i> _r of	$H_2C_2O_4.2H_2O = 1$	26	[1]
	Conc	entration (mol dm	1^{-3}) = ^{mass} / ₁₂₆ × 4 [1]	
(b)	Answ	ver to (a) × 0.025	[1]	
(c)	<i>n</i> (K№	InO_4) weighed = ³	^{.5} / ₁₅₈ [1]	
	<i>n</i> (K№	InO ₄) used = ^{3.5} / ₁₅	₈ x ^{titre} / ₁₀₀₀	
Answ	/er co	rrectly calculated	from candidate's own data [1]	
(d)	(i)	^(b) / _(c) × 2 Answer should b	be 5, but the mark is for calculation from candidate's data.	[1]
	(ii)	(+)7		[1]
	(+)2	(positive sign mu	ist be shown)	[1]
	(iii)	Total OS change	e or number of e^{-} transferred for two Mn species = 2 x 5	[1]
	5 m The <i>A c</i>	oles of ethanedic erefore each C ato orrect balanced e	ic acid contain 10 carbon atoms om increases OS by 1 unit quation 2:5 (giving CO ₂) would score both marks	[1]
(e)	Carb	on dioxide or CO	2[1]	
Part	3: Pa	ge 6	Test tube test	[4 marks]
(a)	Wh	ite precipitate/sus	pension formed	[1]
(b)	(i)	Precipitate is cal	cium ethanedioate	[1]
	(ii)	Ca ²⁺ (aq) + C ₂ C	$O_4^{2-}(aq) \rightarrow CaC_2O_4(s)$	[1]
	Cor	rect state symbol	s, if the species are correct	[1]
Part	4: Pa	ges 7 + 8	Skill E	[14 marks]
(a)	3 ma	rks available (but	t 2 on question paper)	
	High	temperature spee	eds up reaction	[1]
	Parti	cles move faster/	collide more often/ have more successful collisions	[1]
	More	particles have er	nergy greater than the activation energy	[1]

2810	6/03 Mark Scheme	January 2008	
(b)	Ethanedioic acid cannot evaporate <i>or</i> <u>only</u> water evaporates	[1]	
	Number of moles of ethanedioic acid in flask does not change or water is not a reagent in the titration	[1]	
	Number of moles of $KMnO_4$ required is unchanged/ titre is unaffected	[1]	
(c)	Pipette: ^{0.06} / ₂₅ x 100 = 0.24%	[1]	
	Vol flask: $^{0.2}/_{250} \times 100 = 0.08\%$	[1]	
	The volumetric flask is the more accurate	[1]	
(d)	Sulphuric acid is used in excess	[1]	
	Therefore exact/precise volume used does not matter	[1]	
(e)	4 marks Any four points from the ideas below.		
	 Brown colour would obscure the pink colour at the end point of the tite or brown colour makes the end point colour change difficult to see Burette reading at end point /final burette reading would be inaccurate Formation of MnO₂ means that the "wrong" reaction is taking place 	·ation [1] ອ [1]	

- or brown colour means that MnO₄⁻ is not [all] being reduced to Mn²⁺
 It would be difficult to know/measure how much MnO₂ was formed
 Reacting mole ratio is 3:2 [instead of 5:2]
- Reacting mole ratio is 3:2 [instead of 5:2] *or* decrease in oxidation state of Mn is by 3 [instead of 5]
 A greater volume /too much KMnO₄ would be required [to react with the acid]
 Titre values would be inconsistent and unreliable

This mark is conditional on a sensible preceding explanation

Grade Thresholds

Advanced GCE Chemistry (3882/7882) January 2008 Examination Series

Unit Threshold Marks

Unit		Maximum Mark	а	b	С	d	е	u
2811	Raw	60	46	40	34	28	23	0
	UMS	90	72	63	54	45	36	0
2812	Raw	60	48	42	36	30	25	0
	UMS	90	72	63	54	45	36	0
2813A	Raw	120	98	88	78	68	59	0
	UMS	120	96	84	72	60	48	0
2813B	Raw	120	98	88	78	68	59	0
	UMS	120	96	84	72	60	48	0
2813C	Raw	120	93	83	73	63	54	0
	UMS	120	96	84	72	60	48	0
2814	Raw	90	71	63	56	49	42	0
	UMS	90	72	63	54	45	36	0
2815A	Raw	90	70	63	56	49	42	0
	UMS	90	72	63	54	45	36	0
2815C	Raw	90	74	66	59	52	45	0
	UMS	90	72	63	54	45	36	0
2815E	Raw	90	73	66	59	52	45	0
	UMS	90	72	63	54	45	36	0
2816A	Raw	120	98	87	76	66	56	0
	UMS	120	96	84	72	60	48	0
2816B	Raw	120	98	87	76	66	56	0
	UMS	120	96	84	72	60	48	0
2816C	Raw	120	94	82	71	60	49	0
	UMS	120	96	84	72	60	48	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

_	Maximum Mark	Α	В	C	D	E	U
3882	300	240	210	180	150	120	0
7882	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
3882	11.7	35.0	56.6	79.7	95.8	100	556
7882	18.4	51.2	74.1	89.6	96.0	100	212

768 candidates aggregated this series

For a description of how UMS marks are calculated see: <u>http://www.ocr.org.uk/learners/ums_results.html</u>

Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

