Chemistry

Advanced GCE A2 7882

Mark Schemes for the Units

January 2008

OCR (Oxford Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2008
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Chemistry (7882)
 Advanced Subsidiary GCE Chemistry (3882)

MARK SCHEME FOR THE UNITS

Unit/Content Page
2811 Foundation Chemistry 1
2812 Chains and Rings 5
2813/01 How Far? How Fast?/Experimental Skills 1 Written Paper 11
2813/03 How Far? How Fast?/Experimental Skills 1 Practical Examination 15
2814 Chains, Rings and Spectroscopy 20
2815/01 Trends and Patterns 28
2815/02 Biochemistry 33
2815/04 Methods of Analysis and Detection 36
2815/06 Transition Elements 40
2816/01 Unifying Concepts in Chemistry/Experimental Skills 2 Written Paper 44
2816/03 Unifying Concepts in Chemistry/Experimental Skills 2 Practical Examination 49
Grade Thresholds 54

2811 Foundation Chemistry

\begin{tabular}{|c|c|c|}
\hline Question No. \& \& Max Mark \\
\hline \begin{tabular}{l}
\[
\text { 1) } \quad(\mathrm{a})(\mathrm{i})
\] \\
(ii)
\end{tabular} \& atoms of same element/same atomic number/same number of protons with different numbers of neutrons/different masses \(\checkmark\) \& \\
\hline (b)(i) \& \begin{tabular}{l}
weighted mean mass of an atom/average mass of an atom/average mass of the naturally occurring isotopes \(\checkmark\) compared with carbon-12 \(\checkmark\) \\
\(1 / 12\) th of mass of carbon-12/on a scale where carbon-12 is \(12 \checkmark\) \\
mass of 1 mole of atoms of an element compared with 1/12th the mass of 1 mole of carbon-12 is an alternative "mass of the atoms of the element that contains the same number of atoms as are in 1 mole of carbon-12" \(\longrightarrow 2\) marks (mark lost because of mass units) \\
more of \({ }^{11} \mathrm{~B}\left(\right.\) than \(\left.{ }^{10} \mathrm{~B}\right) \checkmark\)
\end{tabular} \& [3]

[1]

\hline | (c)(i) |
| :--- |
| (ii) | \& | $\mathrm{H}_{3} \mathrm{BO}_{3}+3 \mathrm{~K} \longrightarrow \mathrm{~B}+3 \mathrm{KOH} \checkmark$ |
| :--- |
| B changes from (+)3 $\mathbf{~ t o} 0 \checkmark$ 'oxidation number decreases' with no numbers scores one mark (must be in terms of ox no. Ignore electrons) |
| Mark independently | \& \[

$$
\begin{aligned}
& \hline[1] \\
& {[2]}
\end{aligned}
$$
\]

\hline (d) \& | $x=120^{\circ} v$ |
| :--- |
| 3 bonded pairs / 3 bonds $Y=104-105^{\circ} \checkmark$ |
| 2 lone pairs AND (2 bonded pairs OR 2 bonds) |
| electron pair repulsion (anywhere) / |
| electron pairs get as far apart as possible (anywhere) / |
| lone pairs repel (more) / |
| bonds repel \checkmark |
| Any reference to atoms repelling contradicts 'repel mark' | \& [5]

\hline \& \& 15

\hline
\end{tabular}

2) (a)(i) (ii)	heating or thermal decomposition of limestone/ $\mathrm{CaCO}_{3} /$ correct equation: $\mathrm{CaCO}_{3} \longrightarrow \mathrm{CaO}+\mathrm{CO}_{2} \checkmark$ farming: neutralising acid soils/reduces acidity of soil	[1] [1]
(b)(i) (ii) (iii) (iv) (v)	$\begin{aligned} & \mathrm{Ca}\left(\mathrm{OH}_{2}\right)(\mathrm{aq})+2 \mathrm{HNO}_{3}(\mathrm{aq}) \longrightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \checkmark \\ & 2 \text { sig fig minimum throughout } \\ & \left.0.0105 \times 22.45 / 1000=2.36 \times 10^{-4} \checkmark \text { (calc: } 2.35725 \times 10^{-4}\right) \\ & \text { ans to (ii) } \left./ 2=1.18 \times 10^{-4} \checkmark \text { (calc: } 1.178625 \times 10^{-4}\right) \\ & \text { ans to (iii) } \times 40=0.00472 \checkmark \text { (calc: } 0.0047145 \longrightarrow 0.00471) \\ & \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}=40.1+(14+48) \times 2=164.1(\text { accept } 164) \\ & / \mathrm{x}=272.1-164.1=108 \checkmark \\ & \mathrm{x}=6 / \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} .6 \mathrm{H}_{2} \mathrm{O} \checkmark \end{aligned}$ If candidate has based this part on $\mathrm{Ca}(\mathrm{OH})_{2}, ~ ' 11 \mathrm{H}_{2} \mathrm{O}$ ' would score 1 mark consequentially If (272.1 - incorrect calculated value for $\left.\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}\right)$, then 2nd mark can be achieved consequentially but a whole number is required.	[1] [1] [1] [1] [2]
(c)	$\mathrm{Ca}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$ \checkmark for balanced equation \checkmark for state symbols of correct species in equation	[2]
(d)(i) (ii) (iii)	$\mathrm{Ca}^{+}(\mathrm{g}) \longrightarrow \mathrm{Ca}^{2+}(\mathrm{g})+\mathrm{e}^{-}$ equation \checkmark state symbols must be (g), (g) but can be for any attempted equation losing electron(s) mol $\mathrm{Ca}=5.00 / 40.1$ or 0.125 (0.12468379) 1 mol Ca requires $578+1145=1723(\mathrm{~kJ}) \checkmark$ so energy required $=$ answer above derived from IE data $\times 0.125$ $1723 \times 0.125=215(\mathrm{~kJ}) 3$ sig figs \checkmark eg Use of 1145 only gives 143 kJ consequentially (would score 2) Assume 'down the group' ionisation energy decreases \checkmark atomic radii increases / there are more shells \checkmark there is more shielding \checkmark 'more' is essential attraction decreases / increased shielding and distance outweigh the increased nuclear charge \checkmark	[2] [3] [4]
		19

\begin{tabular}{|c|c|c|}
\hline 3) (a) \& \(1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5} \checkmark\) \& [1] \\
\hline \begin{tabular}{l}
(b)(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\(\checkmark\) for correct dot-and-cross \\
\(\checkmark\) for charges \\
allow Mg with a 'full' shell; also ignore any inner shells \\
Mg conducts as there are free/delocalised/mobile electrons \(\checkmark\) not just 'sea of electrons' \\
\(\mathrm{MgCl}_{2}\) (s) does not conduct as no free/delocalised/mobile electrons or ions or charge carriers \(\checkmark\) \(\mathrm{MgCl}_{2}(\mathrm{aq})\) conducts as ions move \(\checkmark\) \(\mathrm{MgCl}_{2}\) dissolves because water is a polar solvent \(\checkmark\) Any 3 observations above
\end{tabular} \& \begin{tabular}{l}
[2] \\
[3] max
\end{tabular} \\
\hline (c) \& increasing nuclear charge/number of protons \(\checkmark\) electrons added to same shell/same or similar shielding \(\checkmark\) electrons experience greater attraction or greater pull \(\checkmark\) \& [3] \\
\hline (d) \& \begin{tabular}{l}
moles \(\mathrm{Cl}_{2}=145 / 24000=6.04 \times 10^{-3} \mathrm{~mol} \checkmark\) accept 0.006 mol \\
\(\mathrm{Cl}_{2}\) is in excess as \(0.00604>0.005 \mathrm{~mol} \mathrm{Cl}_{2} /\) \\
\(\mathrm{Cl}_{2}\) is in excess as \(0.01208>0.01 \mathrm{~mol} \mathrm{Cl}_{2} \checkmark\) \\
Explanation using equation required for 2nd mark ora
\end{tabular} \& [2] \\
\hline (e)

OR \& | Precipitation |
| :--- |
| Add $\mathrm{AgNO}_{3} / \mathrm{Ag}^{+}$(could be in equation) \checkmark |
| $\mathrm{NaCl} / \mathrm{Cl}^{-} \rightarrow$ white precipitate / dissolves in dilute $\mathrm{NH}_{3} \checkmark$ |
| $\mathrm{NaBr} / \mathrm{Br}^{-} \rightarrow$ cream precipitate / dissolves in conc NH_{3} |
| or precipitate does not dissolve in dilute $\mathrm{NH}_{3} \checkmark$ |
| not ' Cl ' or 'Br' or 'chlorine' or 'bromine' |
| but ecf for a second occurrence |
| $\mathrm{Ag}^{+}+\mathrm{Cl}^{-} \longrightarrow \mathrm{AgCl} \checkmark$ or equation for Br^{-} |
| or a full equation, state symbols not required |
| eg: $\mathrm{AgNO}_{3}+\mathrm{NaCl} \longrightarrow \mathrm{AgCl}+\mathrm{NaNO}_{3}$ |
| 'precipitate' is required at least once - could be from : |
| white precipitate or cream precipitate or $\mathrm{AgCl}(\mathrm{s})$ |
| Displacement |
| Add chlorine $/ \mathrm{Cl}_{2}$ (could be in equation) \checkmark (but not Cl) |
| $\mathrm{NaCl} \longrightarrow$ no change/no reaction/pale green \checkmark |
| $\mathrm{NaBr} \longrightarrow$ goes orange/yellow/brown \checkmark |
| If candidate mentions formation of a precipitate do not award |
| observation mark |
| $2 \mathrm{Br}^{-}+\mathrm{Cl}_{2} \longrightarrow \mathrm{Br}_{2}+2 \mathrm{Cl}^{-} \checkmark$ |
| or a full equation, state symbols not required |
| eg: $2 \mathrm{NaBr}+\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{NaCl}+\mathrm{Br}_{2}$ | \& [4]

\hline \& \& 16

\hline
\end{tabular}

4) (a)	$\mathrm{H}_{2} \mathrm{O}$: Hydrogen bonding shown in words or in diagram: H bonding from O of $1 \mathrm{H}_{2} \mathrm{O}$ molecule to H of another \checkmark dipoles shown or described \checkmark with lone pair of O involved in the bond \checkmark Two properties from: Ice is less dense/lighter than water/floats on water/ max density at $4^{\circ} \mathrm{C} \checkmark$ explanation: $\quad \mathrm{H}$ bonds hold $\mathrm{H}_{2} \mathrm{O}$ molecules apart / open lattice in ice / H -bonds are longer \checkmark Higher melting/boiling point than expected Not just high Accept: ‘unusually high/strangely high/relatively high' explanation: H bonds need to be broken \checkmark must imply that intermolecular bonds are broken High surface tension \checkmark explanationstrength of H bonds across surface \checkmark mark 2 properties only: max 4	[3]
(b)	CH_{4} : van der Waals' forces / interactions based on instantaneous/temporary/transient interactions \checkmark HCl : (permanent) dipole - (permanent) dipole interactions intermolecular forces are stronger in HCl than in CH_{4} / more energy required to break the intermolecular forces in HCl than in $\mathrm{CH}_{4} \checkmark$	[3]
	At least two sentences that show legible text with accurate spelling, punctuation and grammar so that the meaning is clear. \checkmark (Mark this from anywhere within Q4)	[1]
		11

2812 Chains and Rings

Question No.		Max Mark
1a	boiling point increases with increased chain length $/ M_{r} \checkmark$ more surface interaction/electrons/van der Waals/intermolecular forces \checkmark	2
ii	boiling point decreases with increased branching \checkmark less surface contact/cannot pack as close/fewer van der Waals/fewer intermolecular forces \checkmark	2
iii	$59-68{ }^{\circ} \mathrm{C} \quad \checkmark$	1
b i	1 mark for pentane \checkmark and one for 2,2-dimethylpropane \checkmark \longrightarrow allow 1 mark if not skeletal but both correct.	2
ii		2
iii	better fuels/burn more efficiently/increases octane rating/used as a fuel additives/reduces knocking(ignite less easily) do not allow "easier to burn" as this is the same as pre-ignition	1

Question No.		Max Mark
2a	C-H bond energy is large alkanes/C-H bonds are non-polar \checkmark hence alkanes are not attracted / not attacked by nucleophiles or electrophiles 2 from 3 allow 1 mark for "no double bond therefore will not react with electrophiles"	2
b i	(molecule/atom/particle (not ion) that) contains an unpaired/single/lone electron (not free electron)	1
ii	homolytic/homolysis	1
iii	uv/sunlight/high temperature/ $>200^{\circ} \mathrm{C} \checkmark$ (not just heat or hot or high temp + high pressure)	1
iv	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{Cl} \bullet \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \bullet+\mathrm{HCl} \checkmark \\ & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \bullet+\mathrm{Cl}_{2} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{Cl} \bullet \checkmark \end{aligned}$	2
v	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \bullet+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \bullet\left(\longrightarrow \mathrm{C}_{6} \mathrm{H}_{14}\right) /$ explained in words but must refer to propyl (not propane) free radicals if correct equation ignore "propane free rads"	1
c i	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3} / \mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \longrightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O} \quad \checkmark$	1
ii	Possibility of forming CO/ incomplete combustion/good ventilation allows complete combustion	1

Question No.		Max Mark
3 a	hydrogen \checkmark Ni/Pt/Rh/Pd	2
ii	$\begin{aligned} & \hline \mathrm{H}_{2} \mathrm{O} / \text { steam } \mathrm{H}_{3} \mathrm{PO}_{4} / \mathrm{H}_{2} \mathrm{SO}_{4} \end{aligned}$	2
iii	$\mathrm{HBr} / \mathrm{NaBr}+\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{NaBr}+\mathrm{H}^{+} \quad \checkmark$	1
b		4
c i	backbone of 6 carbon atoms as shown repeat unit identified do not penalize linkage to $-\mathrm{CH}_{2} \mathrm{OH}$ side chain	2
ii	monomer and repeat unit correctly shown \checkmark correct position on the $\mathrm{n}_{\mathrm{s}} \checkmark$ $\mathrm{n} \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{OH} \longrightarrow\left(\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{OH}\right)_{\mathrm{n}}$ gets both marks n $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O} \longrightarrow\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right)_{\mathrm{n}}$ gets both marks do not penalize linkage to $-\mathrm{CH}_{2} \mathrm{OH}$ side chain	2
iii	poly(prop-2-en-1-ol)/polyprop-2-en-1-ol $\quad \checkmark$	1

3d i	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+2[\mathrm{O}] \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \quad \checkmark \checkmark \\ & \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}+2[\mathrm{O}] \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \checkmark \checkmark \\ & \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}+2[\mathrm{O}] \longrightarrow \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \checkmark \checkmark \end{aligned}$ correct product $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ scores $1 \checkmark$ if aldehyde is made but the equation is correctly balanced $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+[\mathrm{O}] \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{O}$ scores $1 \checkmark$ do not allow $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ or $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COH}$	2
iii	 Any two of the above. The first two have a chiral centre and if they draw two correct optical isomers with 'wedge-shaped' bonds award both marks.	2

2813/01 How Far? How Fast?/Experimental Skills 1 Written Paper

Question No		Max Mark
1) (a)	$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \checkmark$	[1]
(b)	energy $=\mathrm{mc} \Delta \mathrm{T} / 150 \times 4.18 \times 42 \checkmark$	
	$=26.3(\mathrm{~kJ})^{\checkmark}$	[2]
(c)	$\text { number of moles }=\frac{0.600}{16}=0.0375 \checkmark$	[1]
(d)	$\text { enthalpy }=\frac{26.3}{0.0375}=701\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \checkmark$	
	$\Delta \mathrm{Hc}=-701\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \checkmark$ negative sign can be scored as stand-alone mark	[2]
		[Total: 6]

Question No		Max Mark
3(a)	a proton donor/ an H^{+}donor \checkmark	[1]
(b)(i)	$\begin{aligned} & \mathrm{CuO}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CuCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) / \\ & \mathrm{CuO}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) / \\ & \mathrm{O}^{2-}+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \end{aligned}$	
	all formulae and balancing \checkmark	
	$\begin{aligned} & \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) / \\ & \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 2 \mathrm{Na}^{(}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) / \\ & \mathrm{CO}_{3}^{2-}+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \end{aligned}$	
	all formulae and balancing \checkmark	
	state symbols in both equations (ignore ss on CuO and $\left.\mathrm{Na}_{2} \mathrm{CO}_{3}\right) \checkmark$	[3]
(ii)	high activation energy/ strong ionic bonds present (in copper oxide)/ high lattice enthalpy (in copper oxide) \checkmark	[1]
(iii)	bubbling/ effervescence \checkmark	
		[2]
	solid disappears/solid dissolves/ blue or green solution formed	
(c)(1)		
(ii)	completely dissociated/ completely ionised \checkmark	[1]
(iii)	$\mathrm{HClO}_{4} \rightarrow \mathrm{H}^{+}+\mathrm{ClO}_{4}^{-} \checkmark$	[1]
(iv)	$\mathrm{Mg}+2 \mathrm{H}^{+} \rightarrow \mathrm{H}_{2}+\mathrm{Mg}^{2+} \checkmark$	
	no difference in rate \checkmark	
	the concentration of \mathbf{H}^{+}is the same	[Total: 12]

2813/03 How Far? How Fast?/Experimental Skills 1 Practical Examination

PLAN Skill P (16 marks out of 19 available)

T Titration method - 8 marks
T1 Makes up a standard solution of NaHCO_{3}
Known mass and distilled water and use of volumetric flask required
T2 Nitric acid diluted by a factor of $10,20,25,40$ or 50 before titration
Pipette must be used for measurement of the 2 M acid
T3 Equation for reaction given: $\mathrm{NaHCO}_{3}+\mathrm{HNO}_{3} \rightarrow \mathrm{NaNO}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
and justification of quantities so that both solutions have [roughly] equal concentrations or calculation of mass of NaHCO_{3} required for reaction with nitric acid

T4 Use of pipette and burette to measure solutions in titration procedure
Solutions can be used either way round
T5 Two consistent titres (or within $0.1 \mathrm{~cm}^{3}$) obtained
T6 Suitable indicator chosen and correct final colour at end-point stated Litmus and universal indicators are not acceptable.

T7 Correct calculation of relative formula mass of NaHCO_{3} from specimen data
$T 7$ can be awarded for any correct calculation of M_{r}
T8 Detailed calculation of relative formula mass of NaHCO_{3} from specimen data
$T 8$ can be awarded in addition to $T 7$ if the following conditions are met

- Both HNO_{3} and NaHCO_{3} were diluted/made up into solution
- The calculation uses specimen figures
- Working/explanation is very clearly explained

G Gas measurement procedure - 7 marks

Measurement of mass loss is an acceptable alternative method
G1 Use excess HNO_{3} acid and a known/weighed mass of solid NaHCO_{3}
G2 Diagram showing collection using a gas syringe or inverted burette or measuring cylinder [1]
Do not award G2 if heating used or there is no bung or an unworkable collection.
G3 Ignition tube used and simple explanation (to keep reagents apart/prevent loss of gas) or simple procedural note (tilt/shake to mix to start reaction)
Alternative separation methods (eg a divided flask) s are acceptable
G4 Measure volume of gas when no more produced/ fizzing ceases /syringe stops moving [1]
G5 Specimen calculation shown to justify [maximum] mass of NaHCO_{3} used

G6 Calculation shown to deduce a suitable [minimum] volume/concentration of nitric acid
G7 One accuracy precaution
Either repeat whole experiment and take mean of readings
Or use of gas syringe reduces loss of carbon dioxide caused by its solubility in water

S Safety, Sources and QWC - 4 marks

S1 Nitric acid (2M) is corrosive and one of the following precautions

- if spilt, rinse/wash away spill with plenty of water
- dilute before use [in the titration] to reduce hazard level
- wear gloves

S2 References to two secondary sources quoted as footnotes or at end of Plan.

- Book references must have page numbers
- Internet references must go beyond the first slash of web address
- Accept one specific reference to "Hazcards" or equivalent

S3 QWC: text is legible and spelling, punctuation and grammar are accurate There are less than six different errors in legibility, spelling, punctuation or grammar.

S4 QWC: information is organised clearly and accurately

- Is a word count given and within the limits 500-1000 words?
- Are scientific language, formulas and units used correctly
- Are descriptions logical and without excessive irrelevant/repeated material?

PART B PRACTICAL TEST

Part 1 Experiment with NaHCO_{3}

One table of readings drawn showing both sets of four readings labelled and listed

- Mass of weighing bottle (empty) and mass of weighing bottle +K
- Initial temperature and minimum/final temperature

All masses recorded to two decimal places (or 3 dp consistently), with unit (somewhere)
and all measured temperatures recorded to one decimal place, with unit (somewhere)
Calculation of mean temperature fall and mean mass used, both correct
Mean mass should be quoted to two decimal places
Mean temperature should be to one decimal place
Accuracy marks, based on mean temperature drop of supervisor.

- If within $0.8^{\circ} \mathrm{C}$ of supervisor's result $\rightarrow 2$ marks
- If within $1.3^{\circ} \mathrm{C}$ of supervisor's result $\rightarrow 1$ mark
(a) (i) Temperature drop/change (or candidate's mean figure quoted)
(ii) Heat absorbed correctly calculated to 2 or 3 sig fig (= $105 x$ temp drop)
(b) Mr of $\mathrm{NaHCO}_{3}=84$ (or appropriate A_{r} values shown added together)

Mean number of moles of NaHCO_{3}, correctly calculated
(c) $\quad \ldots \ldots+2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ (and no other balancing figures)

State symbols (all correct: s - aq - aq - g - I)
Mark is conditional to both chemical formulae in equation being correct
(d) Method mark: for dividing heat by no of moles and multiplying by 2

Enthalpy change, correctly calculated $={ }^{(\mathrm{a})(\text { (ii })} /($ (b) $\times 2 / 1000$
Answer will be approx +33 kJ (for 2 moles NaHCO_{3})
(e) Safety: credit any two answers from the following

- Use colder acid or reduce the initial temperature of the acid
- Reduce the concentration of acid or add water to the acid.
- Use the solid in lump form or use coarser powder.

Part 2 Experiment with $\mathrm{Na}_{2} \mathrm{CO}_{3}$

Table of readings drawn and two sets of four readings shown
Both mass readings to 2 dp with units and both temperature readings to 1 dp
A technical error penalized in Part 1 is not penalized again in Part 2
Calculation of mean temperature rise and mean mass used, both correct
Accuracy: Both of candidate's temperature rises are within $0.5^{\circ} \mathrm{C}$ of each other
Accuracy marks awarded compared to supervisor's mean value.
If within $0.8^{\circ} \mathrm{C}$ of supervisor's result $\rightarrow 2$ marks
If within $1.3^{\circ} \mathrm{C}$ of supervisor's result $\rightarrow 1$ mark
(a) Heat produced correctly calculated ($=105 x$ temp rise)
(b) Mr of $\mathrm{Na}_{2} \mathrm{CO}_{3}=106$ (or appropriate Ar values added)

Mean number of moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ used.
(c) $\quad \ldots \ldots \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ (and no balancing figures)
(d) Enthalpy change, correctly calculated $={ }^{(a)} /($ b) $\times 1000$

Correct answer to 2 or 3 sig figs, and negative sign shown
Answer should be approx $-46 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Part 3 Enthalpy of decomposition[3 marks]

(a) (i) Two downward arrows drawn, with tips pointing to bottom box
(a) (ii) Arrows correctly labelled with candidate's own values (or with values on the Qn paper)
(b) $\Delta \mathrm{H}=(+) 95.2 \mathrm{~kJ}$ (using figures given) or about +79 kJ from candidate's results Award the mark only for the correct answer, which is 1(d) - 2(d).

Part 4 Evaluation

(a) Award marks from the best two strands

NO mark for reference to small quantities of reagents or heat capacity of thermometer

- Heat lost/gained [to/from surroundings]

Conduction (allow "through sides") or convection (allow "out of top")
Use a lid or cover the container
or use a thicker cup/ cotton wool surround/ extra insulation

- Inaccuracy of thermometer (or it only reads to $0.5 / 1.0^{\circ} \mathrm{C}$)

High percentage error in measurement
Use a more accurately calibrated thermometer/reading to [less than] $0.2^{\circ} \mathrm{C}$

- Loss of [acid] spray

Use a lid or a taller cup

- Fizzing/production of gas still occurring when final reading taken

Reaction is not complete
Stir more thoroughly or use a finer powder or speed up reaction
(b) Temperature rise would be lower/less than before

Twice as much water to be heated up, so temp rise would be half as much
(c) (i) No of moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ required $\left[=\right.$ no of moles of $\left.\mathrm{Na}_{2} \mathrm{CO}_{3}\right]=0.018 / 0.019$

Minimum volume of sulphuric acid needed $=18 \mathrm{~cm}^{3}$, but $25 \mathrm{~cm}^{3}$ used, which is excess.
or number of moles of sulphuric acid present $=0.025$, but only 0.018 mol needed
(c) (ii) To ensure that all of the carbonate reacted.

To speed up the reaction in the later stages/reduce overall time that reaction takes
(d) Any 2 points

- Decomposition requires heat to be supplied, which would be difficult to measure
- It is not easy to measure the temperature of a powder/solid
- Decomposition reaction is at higher temperature than standard conditions /about $25^{\circ} \mathrm{C}$
- Difficult to tell when decomposition reaction was complete

2814 Chains, Rings and Spectroscopy

Qu. No.
2 (a)

(b)

(add to the amine)
$\mathrm{NaNO}_{2} / \mathrm{HNO}_{2}$ and $\mathrm{HCl} \checkmark$
$<10^{\circ} \mathrm{C}$,

the + charge must be on the correct N atom
allow ecf on missing or wrong NO2 position
(c)

one group ionised \checkmark
both groups ionised and rest of structure \checkmark
(d) (i) Tin and (conc) HCl \checkmark
allow other suitable reducing agents (but not NaBH_{4})
allow ONa or just O, but NOT O-Na
then add the phenol alkaline conditions AW \checkmark
(ii)
 correct product \checkmark
rest of the equation \checkmark

Qu. No.
5 (a) (i)

(b) 2-D or 3-D diagram of polypropene to show side chains on the same side labelled
isotactic - eg

2-D or 3-D diagram of polypropene to show side chains on alternating sides labelled syndiotactic eg

2-D or 3-D diagram of polypropene to show side chains on random sides labelled atactic - eg

at least one of the diagrams also shows correct 3-D orientation \checkmark
for 3-D, skeletal as shown, or with labelling of H and CH_{3} on the skeletal structure - .eg

(c) (i) correct structures - eg

(ii)

ester group \checkmark correctrepeat bracketed \checkmark

Qu. No.		Marks
6 (a) (i) ammoniar		[1]
	(nucleophilic) substitution \checkmark	[1]
	$\mathrm{LiAlH}_{4} / \mathrm{Na}$ in ethanol \checkmark	[1]
	reduction / (nucleophilic) addition \checkmark	[1]
(b)	$\begin{array}{ll} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{CH}_{3} \mathrm{COCl} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHCOCH}_{3}+\mathrm{HCl} \\ \text { (or use of the acid anhydride to give } \\ \text { ethanoic acid as the other product) } & \begin{array}{l} \text { allow ecf on } \mathrm{H}_{2} \mathrm{O} \text { as the } \\ \text { product from ethanoic acid } \end{array} \end{array}$	[2]
(c)	basicity a base is a proton acceptor AW \checkmark any of the first three marks can lone pair on N (is used to accept the $\left.H^{*}\right) /$ dative bond to H゙ \checkmark come from a suitable diagram	
	phenylamine phenylamine has lone pair (partially) delocalised around ring \checkmark so the electron pair is less easily donated $1 H^{+}$is less attracted (to the N) AW \checkmark	
	2-phenylethylamine electrons are pushed towards the N / positive inductive effect AW \checkmark	
	so the electron pair is more easily donated $/ H^{H}$ is more attracted to the NAW \checkmark	
	the electron density is lower on the N (for phenylamine) / higher (for phenylethylamine)	
	any 6 out of 7 marks	[6]
	quality of written communication at least two sentences with correct spelling, punctuation and grammar \checkmark	[1]

Qu. No.			Marks
7 (a)	H \quad H overlap of p-orbitals \checkmark		
	above and below the ring \checkmark (π) electrons are spread / delocalised around the ring \checkmark	three marks can come from a good diagram	
	C-C bonds are: same length/strength / in between single $/ \sigma$-bonded $A W \checkmark$		
	Quality of written communication mark for correct use of terms: pi $/ \pi$ and delocalised		[1]
(b)	B contains $9.43 \% \mathrm{H}$, so moles of $C=7.55$, moles $H=9.4$, so CH ratio is: $1: 1.25$		
	empirical formula $=\mathrm{C}_{4} \mathrm{H}_{5} \checkmark$ use of M_{r} and empirical formula to get molecular formula of $\mathbf{B}=\mathrm{C}_{8} \mathrm{H}_{10} \checkmark$	allow $\mathrm{C}_{8} H_{8}$ to $\mathrm{C}_{11} H_{11}$ as ecf from CH ,	
	structure of $\mathrm{B}=$ ethylbenzene or any dimethylbenzene eg or ecf for a valid structure from an incorrect $M_{r} \checkmark$	correct structure of B gets the $2^{\text {nd }}$ and $3^{\text {rd }}$ marks	
	so $A=\mathrm{C}_{2} \mathrm{H}_{5} X / \mathrm{CH}_{3} X$ (depending on their structure) \checkmark or ecf from an incorrect aromatic structure of B	$X=\mathrm{Clor} \mathrm{Br}$	[4]

8 (a) (i) ethyl butanoate \checkmark
(ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COO} \mathrm{C} \mathrm{CH}_{5}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \checkmark$
(allow use of molecular formulae)
(iii) $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COO}^{-} \mathrm{Na}^{+}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \checkmark$
allow ONa or just O^{-}, but NOT O-Na
(b) (i)

(ii) movement of an electron pair \checkmark
(iii) donates a (lone) pair of electrons (to the $C=O$) \checkmark
(c) allow any unambiguous structure or name

3-methylpentanoic acid

2,3-dimethylbutanoic acid

2-methylpentanoic acid

(d)

(e) (i)

(ii) 3 peaks \checkmark areas 1:1:4 \checkmark allow 2:2:8

2815/01 Trends and Patterns

Mark Scheme Page 1 of 5	Unit Code 2815/01	Session January	$\begin{aligned} & \text { Year } \\ & 2008 \end{aligned}$		Version Final
Question	Expected answers			Marks	Additional guidance
1 (a)	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{6}$ and iron has an incompletely filled d-orbital (1)			1	Allow $[\mathrm{Kr}] 3 \mathrm{~d}^{6}$ incomplete 3d sub-shell / incomplete d sub-shell
(b) (i)	$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}(1)$			1	Allow other correct complex ions If answer blank credit can be obtained from (ii)
(ii)	Octahedral shape with indication of three dimensions (1);$90^{\circ}(1)$			2	Must have at least two wedges, dotted lines or construction lines Allow three dimensions if at least two bond angles of 90° are shown that clearly demonstrate 3D If two different bond angles do not award bond angle mark unless correct 90° and 180° Allow ecf from other complex ions even if they do not contain iron. This may include tetrahedral or square planar arrangements
(iii)	Ligand donates an electron pair / ligand donates a lone pair / iron accepts a lone pair / iron accepts electron pair (1); Dative (covalent) / coordinate (1)			2	Allow ecf from wrong complex
(c)	$\begin{aligned} & {\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{SCN}^{-} \rightarrow\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{SCN}\right]^{2+}+\mathrm{H}_{2} \mathrm{O}} \\ & (1) \text {) } \\ & \text { Yellow / orange to (blood) red (1) } \end{aligned}$			2	

Mark Scheme Page 2 of 5	Unit Code 2815/01	Session January	$\begin{aligned} & \hline \text { Year } \\ & 2008 \end{aligned}$		Version Final
Question	Expected answers			Marks	Additional guidance
1 (d)	FeCl_{2} gives green (grey) ppt and FeCl_{3} gives foxy red or orange red or brown-red ppt (1);$\begin{aligned} & \mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{~s}) / \mathrm{Fe}^{3+}(\mathrm{aq})+ \\ & 3 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})(1) \end{aligned}$			2	Allow solid instead of ppt / use state symbol from equation if ppt not written If give two equations both must be correct Allow equations which give $\mathrm{Fe}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ or $\mathrm{Fe}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$
(e)	Cr goes from +3 to +6 which is oxidation (1); Fe goes from +6 to +3 which is reduction (1)			2	Allow one mark for correct identification of all oxidation numbers if other marks not scored
(f)	$2 \mathrm{FeO}_{4}{ }^{2-}+10 \mathrm{H}^{+} \rightarrow 2 \mathrm{Fe}^{3+}+3 / 2 \mathrm{O}_{2}+5 \mathrm{H}_{2} \mathrm{O}$ Correct reactants and products (1); Balanced (1)			2	Allow correct multiples
				$\begin{aligned} & \text { Total } \\ & =14 \end{aligned}$	

Mark Scheme Page 3 of 5	Unit Code 2815/01	Session January	$\begin{aligned} & \hline \text { Year } \\ & 2008 \end{aligned}$		Version Final
Question	Expected answers			Marks	Additional guidance
2 (a)	$2 \mathrm{Na}^{+}(\mathrm{g})+\mathrm{O}^{2-}(\mathrm{g}) \rightarrow \mathrm{Na}_{2} \mathrm{O}(\mathrm{s})(1) ;$ Enthalpy change when one mole of solid $\mathrm{Na}_{2} \mathrm{O}$ is made from its gaseous ions (1)			2	Allow energy released Not energy required Allow ionic compound/ ionic solid / salt / ionic lattice State symbols from equation can be used if states missing from definition
(b)	Correct formulae (1); Correct state symbols (1); Labelled energy changes - Lattice enthalpy - Enthalpy change of formation - Atomisation of magnesium - Atomisation of oxygen - First and second ionisation energy of magnesium (can be labelled together) - First and second electron affinity of oxygen (can be labelled together) Six correct (3); Four or five correct (2); Two or three correct (1)			5	Allow use of acceptable symbols for each enthalpy change eg ΔH_{f} If arrows missing from cycle penalise once only
(c)	(MgO more exothermic because) Oxide ion smaller than carbonate ion / oxide ion has a higher charge density than carbonate ion (1); So oxide ion has a stronger attraction to magnesium ion / carbonate ion has a weaker attraction (1)			2	Allow ora Penalise use of incorrect particle only once in this question
(d) (i)	$\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}(1)$			1	Ignore state symbols
(ii)	Magnesium ion smaller than calcium ion / magnesium ion has a higher charge density / ora (1); Magnesium ion distorts the carbonate ion more than calcium ion / magnesium ion causes more polarization of the carbonate ion (1)			2	Allow ora Penalise use of incorrect particle only once in this question
				$\begin{aligned} & \text { Total } \\ & =12 \end{aligned}$	

Mark Scheme Page 4 of 5	Unit Code 2815/01	Session January	$\begin{aligned} & \hline \text { Year } \\ & 2008 \end{aligned}$		Version Final
Question	Expected answers			Marks	Additional guidance
3 (a)	Colourless to purple or (pale) pink (1)			1	allow it goes pink / it goes purple not just pink / just purple
(b)	Moles of $\mathrm{MnO}_{4}^{-}=3.81 \times 10^{-4}(1)$; Moles of ethanedioic acid $=9.525 \times 10^{-4}(1) / 2.5 \times$ moles of MnO_{4}^{-}; Relative formula mass $=126(1) / 0.120 \div$ moles of ethanedioic acid; $x=2 /\left(M_{r}-90\right) \div 18(1)$			4	Allow ecf throughout
(c)	$(\mathrm{COO})_{2} \mathrm{Mg} / \mathrm{Mg}(\mathrm{OOC})_{2}(1)$			1	$\begin{array}{\|l\|} \hline \text { Allow } \\ \left(\mathrm{COO}^{-}\right)_{2} \mathrm{Mg}^{2+} / \\ \mathrm{Mg}^{2+}\left(-\mathrm{OOC}_{2}\right. \\ \hline \end{array}$
				$\begin{gathered} \text { Total } \\ =6 \end{gathered}$	
4	Structure and Bonding Correct 'dot and cross' diagram for SiCl_{4} (1); Correct 'dot and cross' diagram for MgCl_{2} (1): Correct charges $-\mathrm{Mg}^{2+}$ and Cl^{-}(1); SiCl_{4} - simple molecular / simple covalent (1); MgCl_{2} - giant ionic (1)			5	Charges on ions are independent of 'dot and cross' diagram
	Melting Poin MgCl_{2} - (stron ions (1); SiCl_{4} - (weak) dipole-tempor dipole-induce Correct use of the correct fo	ctrostatic) der Waals pole intera le interactio g and weak ond (1)	between mporary uced be linked to	3	Allow ionic bonds / ionic lattice / 'is ionic' (1) Allow intermolecular forces / description of an intermolecular (1)
	Action of water $\mathrm{PCl}_{5}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow 5 \mathrm{HCl}+\mathrm{H}_{3} \mathrm{PO}_{4}(1)$ Steamy fumes produced / acidic solution produced / vigorous reaction / exothermic (1) $\mathrm{MgCl}_{2}+\mathrm{aq} \rightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq}) /$ dissolves / magnesium ions polarises water molecules (1) Makes a colourless solution / neutral solution (1)			4	Allow any pH between 6 and 7

Mark Scheme Page 5 of 5	Unit Code 2815/01	Session January	$\begin{aligned} & \hline \text { Year } \\ & 2008 \end{aligned}$		Version Final
Question	Expected answers			Marks	Additional guidance
4	Quality of written communication Answer must address the question set and include at least three of the following terms in the correct context - Hydrolysis - Covalent - Ionic - van der Waals - Intermolecular - Dipole - Electrostatic - Dissolution - Electron - Molecule / molecular - Lattice - Giant - Simple - Exothermic - Intramolecular - Dissociate			1	
				$\begin{aligned} & \text { Total } \\ & =13 \end{aligned}$	

2815/02 Biochemistry

Question No.		Max Mark
1) (a)	Ribose with attached base \checkmark and phosphate \checkmark. The correct position for attachment of base (position 1) /phosphate (position 5) レ. Numbers not required if the diagram is clear. A diagram alone is enough. The sugar must be unambiguously ribose in a diagram, not cyclopentane versions.	[3]
(b)	Find six points from the following: (1) Mention of t-RNA and m-RNA molecules \checkmark (2) triplets of bases on m-RNA code for each amino acid \checkmark (3) Each t-RNA carries amino acid on one end corresponding to base triplet at the other \checkmark. AW (4) t-RNA attaches to m-RNA using base triplet which is complementary to base triplet on the m-RNA \checkmark (5) Attachment by hydrogen bonding \checkmark (No need for number of bonds) © Hydrogen bonding is between complementary base pairs CG and $A \cup \checkmark$ Details not required. T is incorrect. (7) Amino acids are linked into polypeptide at the ribosome in the order prescribed by m-RNA/enzymically \checkmark. AW throughout. Candidates who describe transcription can earn a max of 4 marks through ecf on points 4,5,6 and 7 above . Marks may be found from diagrams. QWC Correct use of three of the following terms: complementary, hydrogen bonding, ribosome, $t-R N A, m-R N A$, base triplet, polypeptide \checkmark	[7]
2) (a)	Condensation \checkmark	[1]
(b)	the glycosidic link is $1 \beta-4$ link to left hand glucose/ the sugar involved is β-glucose Ґ. AW	[1]
(c)(i)	Using enzyme /use of cellobiase (accept cellulose) \downarrow. Using acid / heating with aqueous acid \checkmark.	[2]
(ii)	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	[1]
(d)	Cellobiose has many sites/hydroxyl groups available \checkmark for hydrogen bonding to water. \checkmark Correct diagram, such as that below, of hydrogen bonding to water (partial charges not needed)is acceptable for the second mark. They may do this on a structure of cellobiose if they wish. eg R-O-H....OH2 Cellulose has many OH groups tied up in glycosidic links \checkmark and others are involved in internal hydrogen bonding with adjacent/parallel chains $\sqrt{ }$. A good diagram may earn one of these marks.	[4]

3) (a) (i)	A correct ester group \checkmark. The rest \checkmark.	[2]
(ii)	Ester $\sqrt{\text { r }}$	[1]
(iii)	Energy source/storage AW . Insulation/protection of organs \checkmark.	[2]
(iv)	van der Waal's attraction \checkmark between the non-polar hydrocarbon chains in triglyceride and non-polar solvent molecules \checkmark. AW.	[2]
(b) (i)	Any four from: High pH means that sidechain amino groups are largely present as NH_{2} /unionised $\sqrt{ }$. COO^{-}to COOH is incorrect. This disrupts ionic attraction \checkmark between COO^{-}and $\mathrm{NH}_{3}{ }^{+} \checkmark$ (in tertiary structure), changing the shape of the active site. \downarrow. Denaturation.	[4]
b (ii)	Sodium butanoate/ butanoate ions \checkmark. Accept a clear structure unless accompanied by the wrong. Not soap.	[1]
(c)	ristearin does not fit active site so well \checkmark. AW.	[1]
(d) (i)	An inhibitor that competes for/binds at the active site. \checkmark	[1]
(ii)	Orlistat has similar ester group(s) \checkmark which can bind(at active site) using dipole:dipole/hydrogen Or hydrocarbon tails \checkmark to triglycerides which can bind(at active site) using van der Waals forces/IDID \downarrow. AW	[2]
(e)	To hydrolyse/dissolve/break down fats/ triglycerides/lipid $\sqrt{ }$. AW	[1]

4) (a)	The sequence of amino acids in a peptide/protein chain. \checkmark	[1]
(b)	Diagram should show helical chain with C=O and NH groups In the chain \checkmark, hydrogen bonded C=O \ldots. HN \checkmark	[2]
(c) (i)	Contains amide/peptide links in the chain/polyamide/involves 2-aminoacids \checkmark	[1]
(ii)	No H on N for hydrogen bonding. \checkmark AW	[1]
(iii)	Any two points $\checkmark \checkmark$. AW \bullet \bullet \bullet Sidechains not attached to the 2-carbon.(Accept attached to N) Sidechains in synthetic compound not found in natural protein No chiral centres. Only 2 types of R group rather than 20. Regular repeating structure in this polymer not in protein.	[2]
(iv)	By van der Waals attraction \checkmark between non-polar groups such as the benzene rings \checkmark. Or dipole-dipole attraction between the ether groups. Mark the first answer if they offer two alternatives, but max 1 if the correct answer comes second. No marks for three or more answers.	[2]

2815/04 Methods of Analysis and Detection

Question No.	Expected Answers	Max Mark
1a i	```paper: mobile = solvent/water }\checkmark\mathrm{ stationary = solvent/water trapped in paper/cellulose tlC: stationary = SiO adsorption if either }\mp@subsup{\textrm{SiO}}{2}{}/\mp@subsup{\textrm{Al}}{2}{}\mp@subsup{\textrm{O}}{3}{}\mathrm{ or partition if cellulose used as stationary phase} glc: mobile = (carrier) inert gas /He/ Ar/ N2 partition```	2 2 2
ii	$\mathrm{R}_{\mathrm{f}}=\frac{\text { distance moved by solute/spot/component }}{\text { distance moved by solvent }}$	1
iii	$2^{\text {nd }}$ spot up indicated unambiguously	1
b i	component \mathbf{A} because it is the first to emerge/shortest time from injection/shortest retention time	1
ii	attempts to use areas \checkmark calculates the areas of all three peaks eg $0.5 \times 20 \times 4+30 \times 2 \times 0.5+10 \times 2 \times 0.5$ or use of mm measurements from graph or ratio of $40: 30: 10$ or 1.6: 1.5: 0.4 $\%=37.5-43 \%$ (allow max. of 4 sig. figs) \checkmark	3

Question No.	Expected Answers	Max Mark
2a i	${ }^{13} \mathrm{C} \quad \checkmark$	1
ii	$\begin{aligned} n & =\frac{M+1 \times 100}{M \times 1.1} \quad \text { i.e. Use of } M / M+1 \\ & =\frac{4.2 \times 100}{95.3 \times 1.1}=4 \end{aligned}$ (So 4.4 carbons $=1$ mark)	2
iii	$M_{\mathrm{r}}=70$ (from mass spectrum) contains 4 Cs and an $\mathrm{O}=48+16=64 \checkmark$ ($70-64=6 \mathrm{Hs}$) hence formula $=\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O} \checkmark$	3
b	 must show all three components: $\mathrm{C}=\mathrm{C}$, $\mathrm{C}=\mathrm{O}$ and $\mathrm{CH}_{3} \mathrm{CH}$	1
c	(A structural feature within an organic molecule which) absorbs UV/visible/both UV and visible radiation / light \checkmark	1
d	more adjacent/linked/across molecule chromophores/delocalization of electrons, therefore more conjugation decreases energy gap/absorbs at lower energy/ absorbs at longer wavelength/ absorbs at lower frequency \checkmark more likely to absorb in visible region \checkmark	3
e	$\text { ues } f=c / \lambda \text { to calculate frequency } \checkmark \text { or } E=h c / \lambda$ $3.23 \times 10^{-19}(\mathrm{~J})^{\vee}$	2
Total 13		

Question No.	Expected Answers				Max Mark	
4a	Mass spec: X and Y have different M peaks, $X==88$ and $Y=89 \checkmark$ \mathbf{X} and \mathbf{Y} have different ratios for the $M: M+1$ peaks \checkmark Suitable suggestions about similar fragments eg $\mathrm{CH}_{3} \mathrm{CH}^{+}$at $28, \mathrm{COOH}^{+}$at $45, \mathrm{CHCOOH}^{+}$at $58, \mathrm{CH}_{3} \mathrm{CHCOOH}^{+}$ at $73 \checkmark$ Suitable suggestions about different fragments eg X has $\mathrm{CH}_{3} \mathrm{CHCH}_{3}{ }^{+}$at 43 or $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCO}^{+}$at 71 Y has $\mathrm{H}_{2} \mathrm{NNCH}^{+}$at 29 or $\mathrm{H}_{2} \mathrm{NCHCH}_{3}{ }^{+}$at 44 or $\mathrm{CH}_{3}\left(\mathrm{NH}_{2}\right) \mathrm{CHCO}^{+}$ at 72 or NH_{2}^{+}at $16 \checkmark$ In last 2 marks positive charge is needed once on a fragment, or max of 1 mark to be awarded				8	
b		$\begin{array}{\|l\|} \hline \text { Shift } \\ \hline 3.3-4.3 \\ \hline 2.0-2.9 \\ \hline 0.7-1.6 \\ \hline \end{array}$	Splitting singlet quartet triplet \square	Relative peak 3 2 3	3	
QWC	Uses two correct scientific terms such as fingerprint region, wavenumber, absorption, molecular ion or correct units such as cm^{-1}, m/e				QWC	1
					Total	12

2815/06 Transition Elements

Mark Scheme Page 1 of	Unit Code	Session	Year	Version
Abbreviations, annotations and conventions used in the Mark Scheme	```= alternative and acceptable answers for the same marking point = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit ___ = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora \(=\) or reverse argument```			
Question	Expected Answers			Marks
1 (a)	$(+) 3$ Two lone pairs of electrons Forming (two) dative / co-ordinate bonds (with a central metal ion)			1
(b)				1
(c)	Geometric / cis and trans Cis and trans isomers drawn using an appropriate 3-d convention as shown.			$\begin{aligned} & 1 \\ & 2 \end{aligned}$
	Optical Cis isomer chosen Two non superimposable mirror images drawn using an appropriate 3-d convention. (see above) (ignore any charges)			$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
(d)	Green (accept yellow-green / blue-green) All colours are absorbed except green (and yellow) / green (and yellow) is transmitted/reflected.			$\begin{aligned} & 1 \\ & 1 \end{aligned}$ Total: 11

Mark Scheme Page 2 of	Unit Code	Session	Year	Version
Abbreviations, annotations and conventions used in the Mark Scheme	$\begin{array}{\|ll} \hline l & =\text { alternative and acceptable answers for the same marking point } \\ \text { 等 } & \text { = separates marking points } \\ \text { NOT } & =\text { answers which are not worthy of credit } \\ \text { () } & \text { = words which are not essential to gain credit } \\ & =\text { (underlining) key words which must be used to gain credit } \\ \text { ecf } & =\text { error carried forward } \\ \text { AW } & =\text { alternative wording } \\ \text { ora } & =\text { or reverse argument } \\ \hline \end{array}$			
Question	Expected Answers			Marks
2 (a)	Chromium forms oxide on surface Oxides are impervious to water and air / prevent iron reacting with water and/or oxygen (do not credit chromium plating)			1 1
(b)	Green / violet			1
(c) (i)	Orange to yellow			1
(ii)	Acid / H^{+}combines with OH^{-} Equilibrium moves to left to produce more OH^{-} Accept equation showing H^{+}reacting with $\mathrm{CrO}_{4}{ }^{2-}$ as an alternative with suitable explanation			$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(d) (i)	$3 \mathrm{Mn}^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+2 \mathrm{H}^{+} \rightarrow 3 \mathrm{MnO}_{2}+2 \mathrm{Cr}^{3+}+\mathrm{H}_{2} \mathrm{O}$ Correct 3:1 ratio Balanced with no electrons and $\mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{O}$ cancelled			$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(ii)	E^{\ominus} for reaction is $+0.10 \mathrm{~V} /$ is positive / the manganese system is less positive so it will supply electrons ora			1
(iii)	Activation energy is too large / not standard conditions/ rate of reaction is too slow / E^{\ominus} for reaction is too small ora			1
				Total: 10

Mark Scheme Page 3 of	Unit Code	Session	Year	Version
Abbreviations, annotations and conventions used in the Mark Scheme	```/ = alternative and acceptable answers for the same marking point = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit ___ = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora \(=\) or reverse argument```			
Question	Expected Answers			Marks
3 (a)	Emf / voltage / potential difference of a cell Comprising a half cell combined with a standard hydrogen electrode Temp $298 \mathrm{~K} / 25^{\circ} \mathrm{C}$, pressure $100 \mathrm{kPa} / 1$ atmosphere $/ 10^{5}$ Pa, Concentration $1 \mathrm{~mol} \mathrm{dm}^{-3} / 1 \mathrm{M}$ (all 3 needed)			1 1
(b) (i)	Solution $\mathrm{A}-1 \mathrm{M} \mathrm{HCl} / 0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ Solid B - platinum / graphite (allow carbon)			$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(ii)	Arrow on wire (or very close to wire) pointing from hydrogen half cell to $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-} / \mathrm{SO}_{4}{ }^{2-}$ half cell			1
(iii)	$\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+\mathrm{H}_{2} \rightarrow 2 \mathrm{SO}_{4}{ }^{2-}+2 \mathrm{H}^{+}$ Correct species (allow electrons on either / both sides) Balanced (no electrons)			$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(c)	$\begin{aligned} & \mathrm{M}_{\mathrm{r}} \text { of } \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}=238.2 \\ & \mathrm{M}_{\mathrm{r}} \text { of } \mathrm{Na}_{2} \mathrm{SO}_{4}=142.1 \end{aligned}$ Use 23.82 g of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ and 14.21 g of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (allow 1 mark for suggesting 0.1 moles of each reagent)			$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
(d)	E^{\ominus} will increase Equilibrium will shift from left to right for $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-} / \mathrm{SO}_{4}{ }^{2-}$ (allow equilibrium will move towards products)			1 1 Total: 13

2816/01 Unifying Concepts in Chemistryl Experimental Skills 2 Written Paper

Question No.		Max Mark
1) (a)(i) (ii)	The contribution of a gas to the total pressure in a gas mixture/ mole fraction x total pressure/ the pressure a gas (in a mixture) would exert by itself \checkmark $488.60 / 489 \mathrm{kPa} \checkmark$	[1] [1]
(b)(i) (ii)	$K_{p}=\frac{p \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})}{p \mathrm{CO}(\mathrm{g}) \times p \mathrm{H}_{2}(\mathrm{~g})^{2}}$ state symbols not required $K_{p}=\frac{488.6}{3.80 \times 7.60^{2}}=2.226 / 2.23 \checkmark \mathrm{kPa}^{-2} \checkmark$ Mark consequentially using value from (a)(ii) Common ecfs from (a)(ii): $\begin{aligned} & 3.8 \longrightarrow 0.0173 \\ & 481 \longrightarrow 2.19 \\ & 125 \longrightarrow 0.570 \\ & 11.4 \longrightarrow 0.0519 \end{aligned}$	[1] [2]
(c)	Higher Pressure Equilibrium \longrightarrow right as fewer moles on right hand side \checkmark Faster rate as \qquad concentration increases/causing more collisions \checkmark High pressures/temperatures are expensive (to generate) /cause potential safety problems (with walls of containers) \checkmark Higher Temperature Faster ratefrom more energetic/successful collisions: Equilibrium \rightarrow left. \qquad because Kp decreases \checkmark Idea of a high enough temperature for reasonable rate without compromising equilibrium yield \checkmark Catalyst (Speeds up reaction) lowering activation energy/ less time to reach equilibrium (saving production costs or energy)/ allows reaction to take place at a lower temperature/using less energy \checkmark Quality of Written Communication organises relevant information clearly and coherently, using specialist vocabulary where appropriate and linking at least one change with a reason \checkmark	[3] [3] [1] $\rightarrow 6$ max [1]
		12

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
2) (a)(i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
\(\mathbf{H}^{+}(\mathrm{aq})\) : \\
Exp 3 has \(2 \times\left[\mathrm{H}^{+}(\mathrm{aq})\right]\) as Exp 1 and rate has increased by \(4 \checkmark\) \\
so order \(=2\) with respect to \(\mathrm{H}^{+}(\mathrm{aq})\) \\
\(\mathrm{BrO}_{3}{ }^{-}(\mathrm{aq})\) : \\
Exp 2 has \(2 \times\left[\mathrm{BrO}_{3}^{-}\right]\)as Exp 1 and rate increases by \(2 \checkmark\) so order \(=1\) with respect to \(\mathrm{BrO}_{3}{ }^{-}(\mathrm{aq})\) \\
\(\mathrm{Br}^{-}(\mathrm{aq})\) : \\
Exp 4 has \(3 \times\left[\mathrm{BrO}_{3}^{-}(\mathrm{aq})\right]\) as Exp 1 which increases rate by 3 and Exp 4 has \(2 \times\left[\operatorname{Br}^{-}(\mathrm{aq})\right]\) as \(\operatorname{Exp} 1\) \\
rate has increased by 6 so doubling \(\left[\operatorname{Br}^{-}(\mathrm{aq})\right]\) doubles rate \(\checkmark\) so order \(=1\) with respect to \(\mathrm{Br}^{-}(\mathrm{aq})\) \\
rate \(=k\left[\mathrm{H}^{+}\right]^{2}\left[\mathrm{BrO}_{3}^{-}\right][\mathrm{Br}]^{-} \checkmark\)
\[
\begin{aligned}
\& k=\frac{\text { rate }}{\left[\mathrm{H}^{+}\right]^{2}\left[\mathrm{BrO}_{3}^{-}\right][\mathrm{Br}]} / \frac{1.68 \times 10^{-5}}{0.30^{2} \times 0.05 \times 0.25} \\
\& =0.0149 / 0.015 \checkmark \quad \text { units: } \mathrm{dm}^{9} \mathrm{~mol}^{-3} \mathrm{~s}^{-1}
\end{aligned}
\] \\
answer to 2 or 3 sig figs \(\checkmark\) \\
(calculator: 0.0149333333) \\
mark consequentially from (a)(ii) \\
common ecfs: \\
From expt 1: rate \(=k\left[\mathrm{H}^{+}\right]^{2}\left[\mathrm{BrO}_{3}^{-}\right] \longrightarrow 0.00373 \mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-}\)
\end{tabular} \& [2]
[2]
[2]

[1]
[4]

\hline (b) \& gradient at t=0/start \checkmark \& [1]

\hline (c) \& Overall equation has different stoichiometry/number of moles to rate equation \& [1]

\hline \& \& 13

\hline
\end{tabular}

3) (a)	partially dissociates/ionises \checkmark	[1]
(b)	$\mathrm{CH}_{3} \mathrm{COO}^{-}\left(\mathrm{Na}^{+}\right) /($sodium $)$ethanoate \checkmark	[1]
(c)	Equations with H_{2} and CO_{2} produced \checkmark $\begin{aligned} & \mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{CH}_{3} \mathrm{COOH} \longrightarrow 2 \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{CO}_{2}+ \\ & \mathrm{H}_{2} \mathrm{O} \checkmark \\ & \mathrm{Mg}+2 \mathrm{CH}_{3} \mathrm{COOH} \longrightarrow\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Mg}+\mathrm{H}_{2} \checkmark \end{aligned}$	[3]
(d)(i) (ii)	```amount of NaOH used \(=0.200 \times 22 / 1000=4.4 \times 10^{-3} /\) 0.0044 concentration \(=0.0044 \times 1000 / 25=0.176 / 0.18 \mathrm{~mol} \mathrm{dm}^{-3} \checkmark\) metacresol purple because indicator has a pH range coinciding with steepest part of titration curve / 7-10 / equivalence point \(\checkmark\)```	[2]
(e)	$n\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=n\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)=79.2 / 46=1.72$ (calculator: 1.72173913) $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=1.72 \times 1000 / 750=2.29 \mathrm{~mol} \mathrm{dm}^{-3} \checkmark$ (calculator: 2.295652174) $K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]} \checkmark=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$ $\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(K_{\mathrm{a}} \times\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\right)=\sqrt{ }\left(1.70 \times 10^{-5} \times 2.29\right) \checkmark$ $=6.24 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \checkmark$ (calculator: $6.247086277 \times 10^{-3}$) $\mathrm{pH}=-\log \left(6.24 \times 10^{-3}\right)=2.20 / 2.21$ (calculator: 2.204322496) No square root \rightarrow 4.41: does not score 4th and 5th marks No scaling from $750 \mathrm{~cm}^{3} \rightarrow \mathbf{2 . 2 7}$: does not score 2nd mark Use of $\mathbf{6 0}$ instead of $\mathbf{4 6} \boldsymbol{\rightarrow} \mathbf{2 . 2 6}$: does not the 1st mark	[2]

(f)(i)	$\mathrm{CH}_{3} \mathrm{COONa} / \mathrm{NaOH} / \mathrm{Na} \checkmark$ (ii) equilibrium: $\mathrm{CH}_{3} \mathrm{COOH} \quad \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+} \checkmark$ $\mathrm{CH}_{3} \mathrm{COOH}$ reacts with added alkali / $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-} \rightarrow /$ added alkali reacts with $\mathrm{H}^{+} / \mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O} \checkmark$ $\vec{\checkmark} \mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{COO}^{-} /$Equil \rightarrow right (to counteract change) $\mathrm{CH}_{3} \mathrm{COO}^{-}$reacts with added acid or $\mathrm{H}^{+} \checkmark$ Equil \rightarrow left (to counteract change) \checkmark Large amounts/reservoirs/ of HA and $\mathrm{A}^{-} \checkmark$	
		[5 max]

4) (a)	$\begin{aligned} & \text { mass of } \mathrm{H}_{2} \mathrm{~S} \text { per day }=100 \times 10^{6} \times 1.80 / 100 \\ & =1.80 \times 10^{6} \mathrm{~g} / 1.8 \text { tonnes } \checkmark \\ & \\ & n\left(\mathrm{H}_{2} \mathrm{~S}\right) \text { per day }=1.8 \times 10^{6} / 34.1=5.3 / 5.28 \times 10^{4} \checkmark \\ & \text { (calculator: } 52785.92375) \end{aligned}$ Same number of moles $\mathrm{H}_{2} \mathrm{SO}_{4}$ formed, mass $\mathrm{H}_{2} \mathrm{SO}_{4}=5.28 \times 10^{4} \times 98.1=5.18 \times 10^{6} \mathrm{~g} / 5.18$ tonnes (Rounding in previous stage may give 5.19/5.2 = accept.	[3]
(b)	$\begin{aligned} & \text { step 1 } 2 \mathrm{H}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} / \\ & \mathrm{H}_{2} \mathrm{~S}+\mathrm{O}_{2} \longrightarrow \mathrm{SO}_{2}+\mathrm{H}_{2} \checkmark \\ & \text { step 2: } 2 \mathrm{H}_{2} \mathrm{~S}+\mathrm{SO}_{2} \longrightarrow 3 \mathrm{~S}+2 \mathrm{H}_{2} \mathrm{O} / \\ & 4 \mathrm{H}_{2} \mathrm{~S}+2 \mathrm{SO}_{2} \longrightarrow 6 \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O} \checkmark \\ & \text { overall: } 6 \mathrm{H}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \longrightarrow 6 \mathrm{~S}+6 \mathrm{H}_{2} \mathrm{O} / \\ & 2 \mathrm{H}_{2} \mathrm{~S}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{~S}+2 \mathrm{H}_{2} \mathrm{O} \checkmark \end{aligned}$	[3]
(c)	In step 1, $\quad \mathrm{S}$ (oxidised) from -2 to $+4 \checkmark$ In step 2, S in $\mathrm{H}_{2} \mathrm{~S}$ (oxidised) from -2 to $0 \checkmark$ S in SO_{2} (reduced) from +4 to $0 \checkmark$	[3]
(d)	$\begin{aligned} & \mathrm{H}_{2} \mathrm{~S}+\mathrm{CO}_{3}^{2-}=\mathrm{HCO}_{3}^{-}+\mathrm{HS}^{-} \checkmark \\ & \text { acid 1: } \mathrm{H}_{2} \mathrm{~S} ; \\ & \text { acid 2: } \mathrm{HCO}_{3}^{-} \text {base 1: } \mathrm{HS}^{-} \text {base 2: } \mathrm{CO}_{3}{ }^{2-} \checkmark \end{aligned}$	[3]
(e)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SH} \checkmark$ A reagent chosen that would react with a butane-1-thiol $\left(e g \mathrm{O}_{2}, \mathrm{Na}\right.$, alcohol, $\left.\mathrm{HBr}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{PCl}_{5}\right) \checkmark$ correct equation for chosen reagent	[3]
		15

2816/03 Unifying Concepts in Chemistry/Experimental Skills 2 Practical Examination

PLAN: Skill P 16 marks (out of 19 available)

T The redox titration (8 marks)

T1 Makes up a known solution of hydrated iron(II) salt
Weighing, use of distilled water and volumetric flask must all be specified.
T2 Pipette a known volume of solution iron(II) salt into a conical flask and acidifies.
Sulphuric acid must be specified
T3 Aqueous KMnO4 (of specified/known concentration) used in the burette
Concentration used must be between 0.01 and $0.1 \mathrm{~mol} \mathrm{dm}-3$
T4 Correct end colour (allow pink or light purple)
T5 Titrate until two consistent titres are obtained
T6 Equation for redox reaction involved
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{Fe}^{2+} \rightarrow \mathrm{Mn}^{2+}+5 \mathrm{Fe}^{3+}+4 \mathrm{H}_{2}$
T7 Calculation (using titration data) of the Mr of hydrated salt.
T8 Calculation of the value of \boldsymbol{x}
This calculation may also be shown as part of the answer to strand G
This mark requires the actual Mr of anhydrous salt (= 152 or 151.9) to be quoted

G Gravimetric method involving precipitation (7 marks)

G1 Use known mass of iron(II) salt and dissolve in distilled water
G2 Add excess of aqueous barium chloride or sodium hydroxide etc.
G3 Filter mixture using pre-weighed filter paper
or centrifuge the mixture in pre-weighed tube
G4 Two accuracy precautions

- calculation of quantity (mass or volume/concentration) of precipitant needed
- \quad stir mixture or heats[gently] to coagulate precipitate (reason needed)
- use fine grade filter paper or uses reduced pressure/Buchner filtration
- wash residue with [distilled] water
- weigh residue to constant mass [to ensure dryness]
- repeat whole experiment to obtain consistent results

G5 Dry residue [and filter paper] in an oven/desiccator and weigh it
G6 Equation/ionic equation for the precipitation reaction
G7 Show clearly how relative formula mass (or \boldsymbol{x}) can be calculated from mass data
Calculation must show the Mr of solid precipitated: BaSO4 $=233: \operatorname{Fe}(\mathrm{OH}) 2=89.8$

S Safety, sources and qwc (4 marks)

S1 Hazard and safety measure stated for barium chloride or sodium hydroxide.
S2 Two sources quoted in the text or at end of Plan.
Book references must have chapter or page numbers
Internet reference must go beyond the first slash of web address
S3 QWC: text is legible and spelling, punctuation and grammar are accurate
Accept not more than five different error types in legibility, spelling, punctuation or grammar.
S4 QWC: information is organised clearly and coherently

- Is a word count given and within the limits 450 - 1050 words?
- Is scientific language used correctly? (One error is allowed without penalty).
- Is the description of the two experiments logical and clear?

Mark Scheme: A2 Practical Test (Part B)

Part 1: Page 3 Skill I-14 marks

Mass readings

- Both mass readings must be listed
- All masses should be recorded to two (or three) decimal places
- Units, g, must be shown (somewhere)
- Subtraction to give mass of G must be correct.
- Labelling of masses must have minimum of the words "bottle"/"container" (aw)

Presentation of titration data

(All four bullets correct $\rightarrow 2$ marks: If three points correct $\rightarrow 1$ mark)

- Correctly labelled table (initial, final and difference - aw) used to record burette data A table grid (or tabular format) must be used, with lines drawn.
- All accurate burette data (including 0.00) are quoted to $0.05 \mathrm{~cm}^{3}$
- All subtractions are correct (these must be checked)
- Units, cm^{3} or ml , must also be given (once in or alongside the table is sufficient).

Self-consistency of titres

- Both of the candidate's accurate titres (as used for the mean) should agree within $0.10 \mathrm{~cm}^{3}$.

Mean titre correctly calculated
Use of the trial is acceptable if it closer than one of the "accurate" readings

Accuracy - [7 marks]

Work out, using the steps below, what the adjusted candidate's titre (T) would have been if the candidate had used the same mass of Y as the supervisor.

Adjusted titre, $T=$ candidate's mean titre $\mathrm{x}^{\text {supervisor's } \text { mass } / \text { candidate's mass }}$
\boldsymbol{T} is within $2.00 \mathrm{~cm}^{3}$ of mean supervisor's value
[1]
\boldsymbol{T} is within $1.50 \mathrm{~cm}^{3}$ of mean supervisor's value
\boldsymbol{T} is within $1.00 \mathrm{~cm}^{3}$ of mean supervisor's value \boldsymbol{T} is within $0.80 \mathrm{~cm}^{3}$ of mean supervisor's value \boldsymbol{T} is within $0.60 \mathrm{~cm}^{3}$ of mean supervisor's value \boldsymbol{T} is within $0.40 \mathrm{~cm}^{3}$ of mean supervisor's value \boldsymbol{T} is within $0.25 \mathrm{~cm}^{3}$ of mean supervisor's value

Spread penalty

("Spread" is defined by the titres used by the candidate to calculate the mean)
If the closest titres have a spread $>0.40 \mathrm{~cm}^{3}$, deduct 1 mark from the accuracy mark.
If the closest titres have a spread $>0.60 \mathrm{~cm}^{3}$, deduct 2 marks.

Handling of chemicals

Any two points from

- Add a suitable named reducing agent
- Use a dilute solution of the reducing agent
- Wash with plenty of water

Part 2: Pages $4+5$

Skill A
Answers to (a) and (c) must be correctly expressed to 3 sig fig.
(a) M_{r} of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}=126$

Concentration $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)=$ mass $/ 126 \times 4 \quad$ [1]
(b) Answer to (a) $\times 0.025 \quad$ [1]
(c) $n\left(\mathrm{KMnO}_{4}\right)$ weighed $=3.5 / 158 \quad$ [1]

$$
n\left(\mathrm{KMnO}_{4}\right) \text { used }=3.5 / 158 \mathrm{X}^{\text {titre }} / 1000
$$

Answer correctly calculated from candidate's own data
(d) (i) $\quad{ }^{(b)} /(\mathrm{c}) \times 2$

Answer should be 5, but the mark is for calculation from candidate's data.
(ii) $\quad(+) 7$
(+)2 (positive sign must be shown)
(iii) Total OS change or number of e^{-}transferred for two Mn species $=2 \times 5$

5 moles of ethanedioic acid contain 10 carbon atoms
Therefore each C atom increases OS by 1 unit
A correct balanced equation 2:5 (giving CO_{2}) would score both marks
(e) Carbon dioxide or CO_{2} [1]

Part 3: Page 6
 Test tube test

(a) White precipitate/suspension formed
(b) (i) Precipitate is calcium ethanedioate
(ii) $\mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{CaC}_{2} \mathrm{O}_{4}(\mathrm{~s})$

Correct state symbols, if the species are correct

Part 4: Pages $7+8 \quad$ Skill E

(a) 3 marks available (but 2 on question paper)

High temperature speeds up reaction
Particles move faster/ collide more often/ have more successful collisions
More particles have energy greater than the activation energy
(b) Ethanedioic acid cannot evaporate or only water evaporates

Number of moles of ethanedioic acid in flask does not change or water is not a reagent in the titration

Number of moles of KMnO_{4} required is unchanged/ titre is unaffected
(c) Pipette: ${ }^{0.06} / 25 \times 100=0.24 \%$

Vol flask: ${ }^{0.2} / 250 \times 100=0.08 \%$
The volumetric flask is the more accurate
(d) Sulphuric acid is used in excess

Therefore exact/precise volume used does not matter
(e) 4 marks

Any four points from the ideas below.

- Brown colour would obscure the pink colour at the end point of the titration or brown colour makes the end point colour change difficult to see
- Burette reading at end point /final burette reading would be inaccurate
- Formation of MnO_{2} means that the "wrong" reaction is taking place
or brown colour means that $\mathrm{MnO}_{4}{ }^{-}$is not [all] being reduced to Mn^{2+}
- It would be difficult to know/measure how much MnO_{2} was formed
- Reacting mole ratio is $3: 2$ [instead of $5: 2$]
or decrease in oxidation state of Mn is by 3 [instead of 5]
- A greater volume /too much KMnO_{4} would be required [to react with the acid] [1]
- Titre values would be inconsistent and unreliable

This mark is conditional on a sensible preceding explanation

Grade Thresholds

Advanced GCE Chemistry (3882/7882)
January 2008 Examination Series
Unit Threshold Marks

Unit		Maximum	a	b	C	d	e	u
2811	Raw	60	46	40	34	28	23	0
	UMS	90	72	63	54	45	36	0
2812	Raw	60	48	42	36	30	25	0
	UMS	90	72	63	54	45	36	0
2813A	Raw	120	98	88	78	68	59	0
	UMS	120	96	84	72	60	48	0
2813B	Raw	120	98	88	78	68	59	0
	UMS	120	96	84	72	60	48	0
2813C	Raw	120	93	83	73	63	54	0
	UMS	120	96	84	72	60	48	0
2814	Raw	90	71	63	56	49	42	0
	UMS	90	72	63	54	45	36	0
2815A	Raw	90	70	63	56	49	42	0
	UMS	90	72	63	54	45	36	0
2815C	Raw	90	74	66	59	52	45	0
	UMS	90	72	63	54	45	36	0
2815E	Raw	90	73	66	59	52	45	0
	UMS	90	72	63	54	45	36	0
2816A	Raw	120	98	87	76	66	56	0
	UMS	120	96	84	72	60	48	0
2816B	Raw	120	98	87	76	66	56	0
	UMS	120	96	84	72	60	48	0
2816C	Raw	120	94	82	71	60	49	0
	UMS	120	96	84	72	60	48	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	A	B	C	D	E	U
$\mathbf{3 8 8 2}$	300	240	210	180	150	120	0
$\mathbf{7 8 8 2}$	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	\mathbf{U}	Total Number of Candidates
$\mathbf{3 8 8 2}$	11.7	35.0	56.6	79.7	95.8	100	556
$\mathbf{7 8 8 2}$	18.4	51.2	74.1	89.6	96.0	100	212

768 candidates aggregated this series

For a description of how UMS marks are calculated see:
http://www.ocr.org.uk/learners/ums results.html
Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

