Chemistry

Advanced GCE A2 7882

Mark Schemes for the Units

January 2007

Downloaded from http://www.thepaperbank.co.uk

OCR (Oxford Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2007
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annersley
NOTTINGHAM
NG15 0DL
Telephone: 08708706622
Facsimile: 08708706621
E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Chemistry (7882)
 Advanced Subsidiary GCE Chemistry (3882)

MARK SCHEME ON THE UNITS

Unit Content Page
2811 Foundation Chemistry 1
2812 Chains and Rings 7
2813/01 How Far? How Fast? / Experimental Skills 1 Written Paper 13
2813/03 How Far? How Fast? / Experimental Skills 1 Practical Examination 19
2814 Chain, Rings and Spectroscopy 27
2815/01 Trend and Patterns 37
2815/02 Biochemistry 43
2815/04 Methods of Analysis and Detection 49
2815/06 Transition Elements 57
2816/01 Unifying Concepts in Chemistry/Experimental Skills 2 Written Paper 63
2816/03 Unifying Concepts in Chemistry/Experimental Skills 2 Practical Examination 69

* Grade Thresholds 75

Downloaded from http://www.thepaperbank.co.uk

Downloaded from http://www.thepaperbank.co.uk

Mark Scheme 2811
 January 2007

Abbreviations, annotations and conventions used in the Mark Scheme	I $=$ alternative and acceptable answers for the same marking point $;$ $=$ separates marking points NOT $=$ answers which are not worthy of credit () $=$ words which are not essential to gain credit $\overline{\text { ecf }}$ $=$ (underlining) key words which must be used to gain credit AW $=$ alternative wording ora $=$ or reverse argument					
Question	Expected Answers					Marks
1 (a) (i)	(atoms of) same element/same atomic number..... with different numbers of neutrons/different masses					[1]
(b) $\begin{aligned} & \text { (i) } \\ & \\ & \\ & \\ & \\ & \text { (ii) }\end{aligned}$	isotope percentage number of protons neutrons electrons ${ }^{85} \mathrm{Rb}$ 37 48 37 ${ }^{87} \mathrm{Rb}$ 27 to 29 37 50 37 must add mark to 100 \checkmark ie 1 mark for each atomic structure; 1 for \% compositions. $\begin{aligned} A_{r} & =\frac{(85 \times 72)+(87 \times 28)}{100} / 85.56 \checkmark \\ & =85.6 \checkmark 2 \text { nd mark for significant figures } \\ 71 / 29: & 85.58=85.6 \\ 73 / 27: & 85.54=85.5 \end{aligned}$					\checkmark \checkmark $[3]$
(c)	carbon-12/12 ${ }^{12}$,					[1]
(d)	atomic radii of $\mathrm{Rb}>$ atomic radii of elements above/ $R b$ has electrons in shell further from nucleus / Rb has more shells \checkmark Rb has more shielding \checkmark ('more' is essential) (increased) nuclear charge is outweighed / despite increased nuclear chargeby at least one of the factors above/ less attraction/ held less tightly					[3]
(e) (i) (ii)	$\begin{aligned} & \text { Simplest (whole number) ratio of atoms/moles/elements } \\ & \begin{array}{c} \text { ratio } \mathrm{Rb}: \mathrm{Ag}: \mathrm{I}=7.42 / 85.5: 37.48 / 108: 55.10 / 127 \\ \\ \\ \text { or } 0.0868: 0.347: 0.434 \\ \text { or } 1: 4: 5 \checkmark \\ \\ =\mathrm{RbAg}_{4} I_{5} \checkmark \end{array} \end{aligned}$					[1]
						Total: 13

Abbreviations, annotations and conventions used in the Mark Scheme	$\left.\begin{array}{ll}l & =\text { alternative and acceptable answers for the same marking point } \\ \text { NOT } & =\text { separates marking points } \\ \text { = answers which are not worthy of credit }\end{array}\right\}$($)$ words which are not essential to gain credit $=$ (underlining) key words which must be used to gain credit $\overline{\text { ecf }}$ $=$ error carried forward AW $=$ alternative wording ora $=$ or reverse argument	
Question	Expected Answers	Marks
2 (a) (i) (ii) (iii)	8-14 \checkmark $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ 1st mark for species in equation \checkmark 2nd mark for rest with st symbols \checkmark Allow $\mathrm{H}_{2} \mathrm{O}$ as either 'I' or 'aq' precipitate disappears/goes clear/goes colourless \checkmark $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2} \mathrm{CaH}_{2} \mathrm{C}_{2} \mathrm{O}_{6} \checkmark$	[1] [2] [2]
(b) (i)	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} \checkmark$	[1]
(ii)	$3 \checkmark$	[1]
(iii)	$10 \checkmark$	[1]
(iv)	'dot-and-cross' of Ca^{2+} with either 8 electrons or no electrons. 'dot-and-cross' of $2 \mathrm{OH}^{-}$correct \checkmark N.B. H electron and Ca electrons can look the same.	[2]
(c) (i)	```Heat CaCO CaCO}\longrightarrow\textrm{CaO}+\mp@subsup{\textrm{CO}}{2}{} Add water to CaO (or + + H2O in equation) } CaO + H2O\longrightarrowCa(OH)2```	[4]
(d)	neutralising (acid) soils/neutralising sewage/ softening water in water treatment/ neutralising acid water $\sqrt{ }$	[1]
		Total: 15

Abbreviations, annotations and conventions used in the Mark Scheme	$\left.\begin{array}{ll}l & =\text { alternative and acceptable answers for the same marking point } \\ \text { NOT } & =\text { separates marking points } \\ \text { Nanswers which are not worthy of credit }\end{array}\right\}$($)$ $=$ words which are not essential to gain credit $\overline{\text { ecf }}$ $=$ (underlining) key words which must be used to gain credit AW error carried forward AW alternative wording ora $=$ or reverse argument	
Question	Expected Answers	Marks
$\begin{array}{\|lll} \hline 3 & \text { (a) } & \text { (i) } \\ & & \text { (ii) } \end{array}$	```attraction between oppositely charges ions } shared pair of electrons }\checkmark 'shared electrons'scores 1 mark only```	$\begin{aligned} & \hline[1] \\ & {[2]} \end{aligned}$
(b) (i) (ii)	attraction of an atom/element for electrons \checkmark in a (covalent) bond/bonded pair \checkmark one element attracts bonded pair more /is more electronegative than other \checkmark $\longrightarrow \delta$ - on more electronegative atom and $\delta+$ on less electronegative element in example May need to look for these marks in (c) if not given here.	[2] [2]
(c)	H -bond shown between H of one molecule and O, N or F of another \checkmark H-bond shown going to a lone pair \checkmark	[2]
		Total: 9

Downloaded from http://www.thepaperbank.co.uk

Abbreviations, annotations and conventions used in the Mark Scheme	$\left.\begin{array}{ll}l & =\text { alternative and acceptable answers for the same marking point } \\ \text { NOT } & =\text { separates marking points }\end{array}\right]$Nanswers which are not worthy of credit ($)$ $=$ words which are not essential to gain credit $=$ (underlining) key words which must be used to gain credit $\overline{\text { ecf }}$ $=$ error carried forward AW $=$ alternative wording ora $=$ or reverse argument				
Question	Expected Answers				Marks
4 (a)	element Mg Si S 1 mark for eat	structure giant giant simple rect row	bonding metallic covalent covalent	$\begin{array}{\|l\|} \hline \\ \hline \checkmark \\ \hline \checkmark \\ \checkmark \\ \hline \end{array}$	[3]
(b)	Si has strong forces between atoms/ covalent bonds are broken \checkmark P has weak forces between molecules/ intermolecular forces/van der Waals' forces are broken \checkmark				[2]
(c)	```From Na->AI, no of delocalised electrons increases } charge on positive ion increases/ ionic size decreases/ charge density increases } attraction between + ions and electrons increases/ metallic bonding gets stronger }```				[2 max]
					Total: 7

Abbreviations, annotations and conventions used in the Mark Scheme	$\left.\begin{array}{ll}l & =\text { alternative and acceptable answers for the same marking point } \\ \text { NOT } & =\text { separates marking points } \\ \text { Nanswers which are not worthy of credit }\end{array}\right]$($)$ $=$ words which are not essential to gain credit $\overline{\text { ecf }}$ $=$ (underlining) key words which must be used to gain credit AW error carried forward AW alternative wording ora $=$ or reverse argument	
Question	Expected Answers	Marks
$\begin{array}{lll} 5 & \text { (a) } & \text { (i) } \\ & & \text { (ii) } \end{array}$	$12 \times 50 / 1000=0.600 \mathrm{~mol}$ $4 \mathrm{~mol} \mathrm{HCl} \longrightarrow 1 \mathrm{~mol} \mathrm{Cl}_{2} /$ moles $\mathrm{Cl}_{2}=0.15 \mathrm{~mol}$ vol of $\mathrm{Cl}_{2}=0.15 \times 24=3.60 \mathrm{dm}^{3}$ 2nd mark is consequential on molar ratio given	[1] [2]
(b)	Evidence that the oxidation number of $M n$ has reduced and one of the oxidation numbers correct (ie MnO_{2} : ox no of $M n=+4$ or $M n C l_{2}$: ox no of $M n=+2 \checkmark$ The other oxidation number of $M n$ is correct, ie in MnO_{2} : ox no of $\mathrm{Mn}=+4$ or in MnCl_{2} : ox no of $\mathrm{Mn}=+2 \checkmark$	[2]
(c) (i) (ii)	$2 \mathrm{Na}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NaCl}(\mathrm{~s}) \checkmark \checkmark$ 1st mark for equation 2nd mark for state symbols Giant ionic (lattice) or 3D \checkmark with alternating Na^{+}and $\mathrm{Cl}^{-} \checkmark$	[2] [2]
	With Br^{-}, goes yellow/orange/red \checkmark 'precipitate' makes this incorrect. With I^{-}, goes purple/brown/brown \checkmark 'precipitate' should be ignored $\begin{aligned} & \mathrm{Cl}_{2}+2 \mathrm{Br}^{-} \longrightarrow \mathrm{Br}_{2}+2 \mathrm{Cl}^{-} \checkmark \\ & \mathrm{Cl}_{2}+2 \mathrm{I}^{-} \longrightarrow \mathrm{I}_{2}+2 \mathrm{Cl}^{-} \checkmark \end{aligned}$ Or full equations using soluble halides, eg NaBr If both equations given with correct species but not balanced, award 1 mark reactivity trend: Cl more reactive than both Br and $\mathrm{I} /$ Cl is the most reactive Cl (atoms) are smaller (ora) / attraction for electrons or electron affinity is greater / $C l$ is a stronger oxidising agent \checkmark ignore any reference to 'electronegativity'.	[6]
	QoWC: At least 2 sentences in which the meaning is clear.	[1]
		Total: 16

Mark Scheme 2812 January 2007

Q1
(a) separation by (differences in) boiling point
(b) $\quad \mathrm{C}_{7} \mathrm{H}_{16} \longrightarrow \mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{C}_{3} \mathrm{H}_{6}$
(c) (i) Any of

(ii) $\mathrm{C}_{7} \mathrm{H}_{16} \longrightarrow \mathrm{C}_{7} \mathrm{H}_{14}+\mathrm{H}_{2} \quad$ (or by structural formula)
(d) (i) 2,2-dimethylpentane
(ii) 3-methylhexane, 3,3 dimethylpentane or (3)-ethylpentane in any unambiguous form.
(iii) 2,2,3-trimethylbutane
(iv) if branched, difficult to pack/less surface interaction/less points of contact less van der Waals' forces/ less intermolecular bonds/less energy needed to boil
(e) (i) (A fuel whose feedstock is obtained) from a plant/animal excrement
(ii) fossil fuels are non-renewable because they take millions of years to form/ ethanol is renewable because the plant (sugar beet, cane) can be re-grown
(a) (i) $\quad \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{aq}) \longrightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)$ or $(\mathrm{aq})+2 \mathrm{CO}_{2}(\mathrm{~g}) \quad$ balanced equation state symbols can be awarded only if equation shows $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ and CO_{2}
(ii) anaerobic, aqueous, temp range $25-40^{\circ} \mathrm{C} /$ warm to just above room temp
(iii) no more bubbles/gas/ CO_{2}
(b) (i) phosphoric acid $/ \mathrm{H}^{+} /$sulphuric acid
(ii) lone/electron pair of electrons acceptor
(c) (i)

Step 1
curly arrow from π-bond to H^{+}
Step 2 curly arrow from lone pair on the $\mathrm{O}^{\delta-}$ to $\mathrm{C}+$
Step 3 curly arrow from O-H bond to O+
(ii) catalyst ... no marks because it is not consumed/used up in the reaction/owtte
(d)

$$
\underset{\substack{/ \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}}}{\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}}+4 \frac{1}{2} \mathrm{O}_{2} \longrightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

(1 mark if correct formula for all four chemicals and 1 mark for correct balancing)
(e) ethanoic acid/ $\mathrm{CH}_{3} \mathrm{COOH} / \mathrm{CH}_{3} \mathrm{COCl}$

Q3

(a) 3-chloro(-2-)methylprop-1-ene/1-chloro(-2-)methylprop-2-ene
(b)

Backbone of 4 carbons and a reasonable attempt gets 1 mark.
(c) (i)

(ii)

1 mark for HBr
(iii) $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$
H^{+}and reflux
(iv)

/ methylprop-2-enal
(d) infra-red
(alcohol)E would show absorption $3230-3550 \mathrm{~cm}^{-1}$
(carboxylic acid) I would show either an absorption $1680-1750 \mathrm{~cm}^{-1}$ or $2500-3300 \mathrm{~cm}^{-1}$

I contains $\mathrm{C}=\mathrm{O}$ at approx $1700 \mathrm{~cm}^{-1}$ but \mathbf{E} doesn't get both marks

Q4
(a) (i) uv/sunlight/high temperature (range $400-700^{\circ} \mathrm{C}$)
(ii) $\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{Cl} \bullet$
$\mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{Cl} \bullet \longrightarrow \mathrm{HCl}+\bullet{ }^{-} \mathrm{C}_{4} \mathrm{H}_{9} / \mathrm{C}_{4} \mathrm{H}_{9} \bullet$
$\bullet \mathrm{C}_{4} \mathrm{H}_{9} / \mathrm{C}_{4} \mathrm{H}_{9} \bullet+\mathrm{Cl}_{2} \longrightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}+\mathrm{Cl} \bullet$
(iii) any two free radicals from (a) (ii)
(iv) homolytic (fission)
(b) (i) 2,3-dichlorobutane
(ii)

(iii) any dichlorobutane except 2,3-dichlorobutane.
(c) (i) ethanol
(ii) elimination
(iii) any one from:

[Total: 12]

Q5

Bonding: π-bond formed by overlap of (adjacent) p-orbitals $/ \pi$-bond labelled on diagram diagram to show formation of the π-bond

or

Shape/bond angles:

tetrahedral around the CH_{3}
bond angle $=109^{\circ} 28^{\prime} \quad\left(109-110^{\circ}\right)$
trigonal planar around each C in the $\mathrm{C}=\mathrm{C}$
bond angle $=120^{\circ} \quad\left(118-122^{\circ}\right)$

Cis-trans

cis \& trans correctly labelled eg but-2-ene require a double bond because it restricts rotation each C in the $\mathrm{C}=\mathrm{C}$ double bond must be bonded to two different atoms or groups

QWC Allow mark for well constructed answer and use of three terms like: orbital, tetrahedral, trigonal, planar, rotation, spatial, stereoisomers, geometric

Mark Scheme 2813/01 January 2007

Abbreviations, annotations and conventions used in the Mark Scheme	$\left.\begin{array}{ll}l & =\text { alternative and acceptable answers for the same marking point } \\ \text { NOT } & =\text { separates marking points }\end{array}\right]$Nanswers which are not worthy of credit ($)$ $=$ words which are not essential to gain credit $=$ (underlining) key words which must be used to gain credit ecf $=$ error carried forward AW $=$ alternative wording ora $=$ or reverse argument	
Question	Expected Answers	Marks
1 (a) (i) (ii) (b) (c) (i) (ii)	$\begin{aligned} & \mathrm{MgCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\ & \text { balancing } \checkmark \\ & \text { state symbols } \checkmark \\ & \mathrm{MgCO}_{3}+2 \mathrm{H}^{+} \rightarrow \mathrm{Mg}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} / \\ & \mathrm{CO}_{3}+2 \mathrm{H}^{+} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \checkmark \end{aligned}$ (as the reaction proceeds) the concentration decreases (rate) of collision decreases \checkmark reaction stops when all of one reagent is used up \checkmark sketch to show slower rate of production ie less steep (must not be straight line) ${ }^{\checkmark}$ final volume the same but reached later \checkmark rate is slower because weak acid is partially ionised/ dissociated lower concentration of H^{+}in weak/ higher concentration of H^{+}in strong/ $\mathrm{HCl} \checkmark$	2 1 3 2 2 Total: 10

\begin{tabular}{|c|c|c|}
\hline Abbreviations, annotations and conventions used in the Mark Scheme \& \(\left.\begin{array}{ll}l \& =\text { alternative and acceptable answers for the same marking point } \\
\text { NOT } \& =\text { separates marking points } \\
\text { = answers which are not worthy of credit }\end{array}\right\}\)\begin{tabular}{ll}
= words which are not essential to gain credit \\
(\& \(=\) (underlining) key words which must be used to gain credit \\
\(\overline{\text { ecf }}\) \& \(=\) error carried forward \\
AW \& \(=\) alternative wording \\
ora \& \(=\) or reverse argument
\end{tabular} \& \\
\hline \multirow[t]{8}{*}{\begin{tabular}{l}
Question \\
3 (a) \\
(b) (i) \\
(ii) \\
(iii) \\
(iv) \\
(c) (i) \\
(ii)
\end{tabular}} \& \begin{tabular}{l}
Expected Answers \\
any two from rate of forward reaction \(=\) rate reverse reaction \(\checkmark\) macroscopic properties remain constant/ concentrations remain constant
\end{tabular} \& Marks

2

\hline \& | a substance that alters the rate of a reaction without being used up / |
| :--- |
| a substance that lowers the activation energy (for a reaction) by providing an alternative route | \& 1

\hline \& catalyst is in the same state/ phase as reactants \checkmark \& 1

\hline \& $\mathrm{H}^{+} \checkmark$ \& 1

\hline \& they alter the rate of the forward and the reverse reaction by the same amount \& 1

\hline \& axes labelled y as number/ fraction/ \% of molecules/ particles and x as energy/ enthalpy/ velocity/ speed \checkmark correct shape to include origin, hump and position wrt x axis \& 2

\hline \& two vertical lines drawn both to the RHS of hump (at least one labelled Ea) (labels reversed cannot score) greater proportion of collisions have energy greater than Ea/ more molecules exceed Ea \checkmark \& 2

\hline \& \&

\hline
\end{tabular}

Abbreviations, annotations and conventions used in the Mark Scheme	$\left.\begin{array}{\|ll}l & =\text { alternative and acceptable answers for the same marking point } \\ ; & =\text { separates marking points }\end{array}\right]$NOT $=$ answers which are not worthy of credit () $=$ words which are not essential to gain credit $=$ (underlining) key words which must be used to gain credit ecf $=$ error carried forward AW $=$ alternative wording ora $=$ or reverse argument	
Question	Expected Answers	Marks
4 a) b)	pressure 50-1000 atm temperature $200-600^{\circ} \mathrm{C} \checkmark$ rate (increased) pressure increases rate because molecules are closer together/ more concentrated (increased) temperature increases rate because molecules are moving faster/ have more energy equilibrium increased pressure pushes equilibrium to RHS \checkmark because fewer (gas) moles/ molecules on RHS increased temperature pushes equilibrium to LHS \checkmark because (forward) reaction is exothermic compromise if temperature is too high, low yield \checkmark if temperature is too low, slow rate \checkmark	\%
	if pressure is too high, increased costs/ safety issues \checkmark	9 Total: 11

Downloaded from http://www.thepaperbank.co.uk

Mark Scheme 2813/03 January 2007

AS Practical Exam 2813/03 Jan 2007: Mark Scheme

Skill P: $\mathbf{1 6}$ marks (out of 19 available)

G Gas collection method - 9 marks

G1 Adds measured quantity of sulphuric acid to known mass of baking powder
G2 Collects the gas in a gas syringe/measuring cylinder/inverted burette or measures total mass of materials at start, then mass loss after reaction

G3 Uses excess dilute sulphuric acid and states reason for excess
G4 Draws a neat accurate diagram of apparatus (using a ruler)
If mass loss method is described, a wool plug must be shown
G5 "Inner tube" (or equivalent) used to prevent premature start of reaction
G6 Waits until no more gas collected before measuring volume of gas.
A specific observation is required (fizzing stops or syringe plunger stops moving) Mass loss: measurement must be to constant mass (aw)

G7 Repeats whole experiment until volumes of gas are consistent/takes mean
G8 $\quad \mathrm{CO}_{2}$ is [slightly] soluble in water (or acid)
G9 Uses water/acid pre-saturated with CO_{2}
or uses hot water or uses acid that is more concentrated
or states that syringe collection is more accurate since less water involved

C Calculations etc - 6 marks

C 1 Background theory: baking powder liberates CO_{2} when heated or when acidified. and the CO_{2} produced makes dough/cakes/bread (etc) rise.

C 2 Researches typical \% mass of NaHCO_{3} in baking powder (stating source of info) or states three components of baking powder (starch, bicarb and an organic acid) or realises that method assumes that no other type of carbonate is present

C3 Equation for reaction: $2 \mathrm{NaHCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
C4 Calculates suitable mass of NaHCO_{3} so that syringe is not over-filled with gas
C5 Calculates suitable volume or concentration of sulphuric acid to use
Calculation must implicitly use a correct mole ratio
C6 Calculates $\%^{\mathrm{NaHCO}_{3}}$ in baking powder from mass used and volume of gas Accept an intelligible calculation leading to any answer below 100\%

S Sources etc - 4 marks

S1 Researches hazard of and explains a safety measure for the sulphuric acid
Sulphuric acid is corrosive if > 1.5M (and irritant at lower concentrations) Treat any gross overstatement of hazard as a CON

S2 References to two secondary sources quoted as footnotes or at end.

- Books must have chapter or page numbers
- An Internet reference must go beyond the first slash of web address
- Accept one specific reference a page in "Hazcards"

S3 QWC: text is legible and spelling, punctuation and grammar are accurate
Accept not more than five different errors in legibility, spelling, punctuation or grammar.

- Treat ICT slip in text (eg "cm3") as one error.
- Don't penalise an error that has already been penalised in an equation.

S4 QWC: information is organised clearly and accurately
Can you say "yes" to all three of the following questions?

- Is a word count given and between 450 and 1050 words?

Accept a total word count or any word numbering in the margin

- Is scientific language used correctly? Allow one error, only, without penalty. Is there any error of terminology - eg "strong" for "concentrated"? Is there an incorrect chemical formula in the text? If units are quoted in text or in calculations are they [normally] correct?
- Is the description written logically, coherently and without undue repetition?

AS Practical Test (Part B)

Page 3-8 marks (Part 1)
First three weighings listed or tabulated[1]Unit, g, must be shown somewhere against the weighings.
Fourth weighing (after re-heat) shown and is within 0.01 g of third weighing [2]
Give one mark if fourth mass is within 0.02 g of third mass
Mass of NaHCO_{3} used and mass of residue obtained
These must both be subtracted correctly and given to 2 (or 3) dp)
Accuracy of \% mass obtained
Calculate mean supervisor's \% mass of residue/mass of NaHCo3 to nearest 1 dp .[3]Then calculate candidate's $\%$ mass in the same way.Answers of candidate and supervisor \% are within $1.0 \% \rightarrow 3$ marks:
within $2.0 \% \rightarrow \mathbf{2}$ marks:within $4.0 \% \rightarrow 1$ mark
Safety: yellow flame is visible/easily seen[1]
Page 4 - 3 marks (Part 2)
2(a) Lime water goes milky/cloudy[1]
Solid does not change colouror white residue/solid formed after heating (allow "white precipitate")or condensation produced or drops of liquid formed [higher up the test tube]or after some time, lime water begins to go colourless again
Carbon dioxide produced (allow formula)
Page 5-6 marks (Parts $2+3$)
2(b)(i) Fizzing/bubbling observed[1]Do not allow "gas produced", but allow "colourless gas produced"
(ii) Residue is sodium carbonate [1]
Reason for deduction:Either: only sodium carbonate reacts with acid to give off gas/carbon dioxideOr sodium oxide/hydroxide produce no gas when acid is added[1]
3(a) [sodium hydrogen carbonate \rightarrow water] + sodium carbonate + carbon dioxide [1]
Both products must be correct. Words are required - it is a "word equation"
3(b) M_{r} of $\mathrm{NaHCO}_{3}=84$ [1]
no of moles of NaHCO_{3}, correctly calculated from candidate's data [1]
Answer must be correct to 3 sig fig

Page 6-4 marks (Part 3)

3(c) M_{r} of $\mathrm{Na}_{2} \mathrm{CO}_{3}=106$
Allow ecf to candidate's answer in 3(a), either $\mathrm{NaOH}=40$ or $\mathrm{Na}_{2} \mathrm{O}=62$
Number of moles of residue, correctly calculated from candidate's data
3(d) Ratio $=2: 1$
3(e) Equation fully correct: $2 \mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Page 8 - 4 marks (Part 4)

4(a) Both temperatures clearly labelled and recorded to $0.5^{\circ} \mathrm{C}$ (ie one decimal place) [
Temperature drop correctly worked out and unit shown (somewhere)
Accuracy - 2 marks

- Candidate's temperature drop within $0.8^{\circ} \mathrm{C}$ of supervisor's mean $\boldsymbol{\rightarrow} \mathbf{2}$ marks
- Candidate's temperature drop within $1.5^{\circ} \mathrm{C}$ of supervisor's mean $\rightarrow \mathbf{1}$ mark

Page 9 - 5 marks (Part 4)

4(b) Temperature change/fall shown in formula
Heat absorbed, correctly calculated (= 105 x temp fall)
4(c) No of moles of $\mathrm{HCl}=0.025$
4(d) $\Delta \mathrm{H} / \mathrm{kJ}=$ heat $/$ no of moles $\mathrm{X}^{1} / 1000$
This is a method mark
$\Delta \mathrm{H}$ value calculated: correct answer is expressed in kJ , to 2 or 3 sf .
Positive sign is not required, but penalise a negative sign with the answer

Pages 10+11-14 marks (maximum, out of 19). Part 5
5(a) 2 marks (but 1 on question paper)
Constant mass or third and fourth mass readings should be [nearly] equal
To ensure that the solid has completely reacted/decomposed

5(b) 4 marks (but 3 on question paper)
Yellow flame contains soot/carbon.
A deposit of soot would increase the mass of the crucible and residue

Yellow flame has a lower temperature

 or yellow flame heat is [too] gentle [compared to a cone flame]Heating would be required for a longer period or the NaHCO_{3} might not decompose [completely] (owtte)

5(c) 2 marks
Potential error $=0.02 \mathrm{~g}$, because two readings are involved
$\begin{aligned} & \% \text { error }={ }^{0.02} / \text { mass of } \mathrm{NaHCO3} \times 100 \text { (ignore sf) } \\ & \text { Give } 1 \text { mark (out of 2) for use of } 0.01 \text { in this expression }\end{aligned}$

5(d) 2 marks
Repeat experiment and take mean/ignore anomalous results
Consistent readings are evidence of reliability

5(e) 9 marks (but 6 on question paper)
Mark the best three strands from those below

- Heat gains (accept "losses") during reaction

These result from convection or conduction
Use a lid or thermos flask or thicker/better/more insulation/calorimeter

- Loss of [acid] spray during reaction

Use a lid or bigger cup or acid that is more dilute

- Inaccuracy of the thermometer or temperature drop is [too] small

This results in a high percentage error in the measurement
Allow a reasonable attempt to calculate \% error for thermometer
Use acid that is more concentrated [to increase the temperature change] or use a thermometer reading to 0.1 oC or one more accurately calibrated (owtte) [1]

- There were still some bubbles/fizzing when the final temp reading was taken

This shows that the reaction had not finished
Use NaHCO_{3} with greater surface area/ more powdered
or use acid that is more concentrated

- Pipette/burette is more accurate than a measuring cylinder (owtte)

Sensible \% error for one piece of apparatus correctly calculated

Downloaded from http://www.thepaperbank.co.uk

Mark Scheme 2814
 January 2007

Downloaded from http://www.thepaperbank.co.uk

Qu. No.		Marks
2	General formula of an α-amino acid Diagram to show length of polypeptide / repeat unit - eg with: displayed peptide bond correct structure with a minimum of two amino acids joined (can be scored by a dipeptide) idea of polymerisation shown by 'end bonds' \checkmark loss of water \checkmark relate variety to different R groups / sequence of amino acids \checkmark AW Quality of written communication: correct organisation and use of both of the terms: condensation polymer(isation) and peptide bond/link \checkmark	[7]

Qu. No.		Marks
5 (a)	$\mathrm{CH}_{3} \mathrm{COOH}$ $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{SOCl}_{2}$ reactants $\mathrm{PCl}_{5}$$\longrightarrow \mathrm{CH}_{3} \mathrm{COCl}+\underset{3}{ } \longrightarrow \mathrm{SO}_{2}+\mathrm{HCl} /$	[2]
(b)	$\mathrm{CH}_{3} \mathrm{COCl}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{HCl} \checkmark$	[1]
(c)	Any three of:	
	- absorption at $2500-3300\left(\mathrm{~cm}^{-1}\right)$ for $\mathrm{O}-\mathrm{H}$ (in COOH) - absorption at 1000-1300 $\left(\mathrm{cm}^{-1}\right)$ for $\mathrm{C}-\mathrm{O}$ - absorption at 1680-1750 / below $1750\left(\mathrm{~cm}^{-1}\right)$ for $\mathrm{C}=\mathrm{O}$ - no peak at $\sim 600\left(\mathrm{~cm}^{-1}\right) /$ no $C-C l ~ p e a k ~$	
	ANY 3 out of 4 marks $\checkmark \checkmark \checkmark$	[3]
(d)	ethanoic acid because: $M_{r}=60 \checkmark$	
	$60=m / e$ value / mass of the molecular ion / furthest right peak / correct peak indicated on the spectrum or any valid evidence based on the the absence of peaks due to Cl or valid fragmentation peaks that would distinguish them	[2]

[Total: 8]

Qu. No.		Marks
7		[6] [1]

[Total: 7]

Downloaded from http://www.thepaperbank.co.uk

Mark Scheme 2815/01 January 2007

Abbreviations, annotations and conventions used in the Mark Scheme	$\left.\begin{array}{ll}l & =\text { alternative and acceptable answers for the same marking point } \\ \text { NOT } & =\text { separates marking points } \\ \text { Nanswers which are not worthy of credit }\end{array}\right\}$($)$ $=$ words which are not essential to gain credit $=$ (underlining) key words which must be used to gain credit ecf $=$ error carried forward AW $=$ alternative wording ora $=$ or reverse argument		
Question	Expected answers	Marks	Additional guidance
1 (a)	Increase in the number of electrons in the outer shell (in the atom of the element in Period 3) / increase in oxidation number of the element in Period 3 (1)	1	
(b)	Ions are not able to move / aw (1)	1	Ignore reference to electrons
(c) (i)	$\begin{aligned} & \mathrm{Al}_{2} \mathrm{O}_{3}+6 \mathrm{HCl} \rightarrow 2 \mathrm{AlCl}_{3}+3 \mathrm{H}_{2} \mathrm{O} / \\ & \mathrm{Al}_{2} \mathrm{O}_{3}+6 \mathrm{H}^{+} \rightarrow 2 \mathrm{Al}^{3+}+3 \mathrm{H}_{2} \mathrm{O}(1) \end{aligned}$	1	Allow Al^{3+} and Cl^{-}as products Not $\mathrm{Al}_{2} \mathrm{Cl}_{6}$ Ignore State symbols
(ii)	$\mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{NaOH} \rightarrow 2 \mathrm{Na}_{3} \mathrm{Al}(\mathrm{OH})_{6}$	1	
(d)	Lots of covalent bonds / many covalent bonds (1) have to be broken which needs a large amount of energy (1)	2	Allow network structure (1)
(e)	(Reacts with water) to form an acidic solution / $\mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}(1)$	1	Ignore it is acidic
		$\begin{gathered} \text { Total } \\ =7 \end{gathered}$	

Abbreviations, annotations and conventions used in the Mark Scheme			
Question	Expected answers	Mark \mathbf{s}	Additional guidance
2 (a)	Oxidation because oxidation state of Hg changes from 0 to +2 so oxidation (1) Reduction because oxidation number of O changes from -1 to -2 (1) Or Correct identification of all the oxidation numbers (1) Correct identification of oxidation and reduction (1)	2	Allow ecf for the identification of oxidation and reduction from wrong oxidation numbers
(b)	Does not have an incomplete set of d electrons / does not have a partially filled d orbital / does not have a partially filled d sub-shell / ora (1)	1	Allow use of 3d
(c) (i)	Correct 'dot and cross' diagram (1)	1	Ignore inner shell of oxygen atoms
(ii)	Idea that lone pair repulsion is greater than bond pair repulsion / 2 bonded pairs and two lone pairs (1) Bond angle of $104^{\circ}-105^{\circ}(1)$	2	Allow any bond angle between 95 to 106° (1) Allow ecf from wrong 'dot and cross' diagram
		Tota $=6$	

Abbreviations, annotations and conventions used in the Mark Scheme	$\left.\begin{array}{ll}l & =\text { alternative and acceptable answers for the same marking point } \\ \text { I } & =\text { separates marking points }\end{array}\right]$NOT $=$ answers which are not worthy of credit ($)$ $=$ words which are not essential to gain credit $=$ (underlining) key words which must be used to gain credit ecf $=$ error carried forward AW $=$ alternative wording ora $=$ or reverse argument		
Question	Expected answers	Marks	Additional guidance
3 (a)	Mole ratio Fe : $\mathrm{Cl}=2.99$: 9.01 (1); Empirical formula $=\mathrm{FeCl}_{3}$ (1); Molecular formula $=\mathrm{Fe}_{2} \mathrm{Cl}_{6}$ (1) Alternatively Mole ratio of Fe to compound is $2.99: 1.44$ (1) So formula of compound is $\mathrm{Fe}_{2} \mathrm{Cl}_{x}$ (1) Molecular formula $=\mathrm{Fe}_{2} \mathrm{Cl}_{6}$ (1)	3	
(b)	Simple molecular / simple covalent (1) Idea that if giant structure then it would have a high melting point / idea that simple structure because it melts easily / idea that covalent or molecular chlorides are hydrolysed to give an acidic solution (1)	2	Not ionic bonding
(c) (i)	$\left(1 s^{2} 2 s^{2} 2 p^{6}\right) 3 s^{2} 3 p^{6} 3 d^{6}(1)$	1	
(ii)	Octahedral shape with some indication of three dimensions (1); Bond angle 90° (1)	2	Allow use of wedges and dotted lines to indicate three dimensions Allow three dimensions if at least two bond angles of 90° are shown that clearly demonstrate 3D If two different bond angles do not award bond angle mark
(iii)	Green / olive green / dark-green / green-blue ppt (1) $\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{~s})(1)$	2	Allow solid instead of precipitate Allow solid or precipitate to be awarded from the state symbol in $\mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{~s})$

Abbreviations, annotations and conventions used in the Mark Scheme	l $=$ alternative and acceptable answers for the same marking point NOT $=$ separates marking points NOT $=$ answers which are not worthy of credit () $=$ words which are not essential to gain credit $=$ (underlining) key words which must be used to gain credit ecf $=$ error carried forward AW $=$ alternative wording ora $=$ or reverse argument		
Question	Expected answers	Marks	Additional guidance
$3 \quad$ (d) (i)	$\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}+\mathrm{SCN}^{-} \rightarrow\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{SCN})\right]^{2+}+\mathrm{H}_{2} \mathrm{O}(1)$	1	
(ii)	Any five from Known amounts or volumes of FeCl_{3} and KSCN (and water) are mixed together (1) Absorbance of solution is measured (1) Idea of a fair test (same overall volume and changing the volumes of the other reagents in a logical way) (1) Volumes or amounts of reagents that give maximum absorbance are determined (1) Molar ratio of reagents calculated / moles of substances must be calculated (1) The molar ratio should be one to one (1)	5	Allow marks from an appropriate graph
(e) (i)	$\mathrm{MnO}_{2}+4 \mathrm{H}^{+}+2 \mathrm{Fe}^{2+} \rightarrow \mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{Fe}^{3+}(1)$	1	Ignore state symbols
(ii)	```Moles of \(\mathrm{Fe}^{2+}\) that reacted with \(\mathrm{MnO}_{2}=0.02-0.0123=\) 0.0077 (1) Mass of \(\mathrm{MnO}_{2}=0.00385 \times 86.9=0.335\) (1) \(\%\) purity \(=66.4 \%\) (1) Alternatively Moles of \(\mathrm{MnO}_{2}\) in \(0.504=0.00580\) So moles of \(\mathrm{Fe}^{2+}\) that should react with this is 0.0116 (1) Moles of \(\mathrm{Fe}^{2+}\) that reacted with \(\mathrm{MnO}_{2}=0.02-0.0123=\) 0.0077 (1) \(\%\) purity \(=66.4 \%\) (1)```	3	Allow ecf within question Allow 66.4 66.5
		$\begin{aligned} & \text { Total } \\ & =20 \end{aligned}$	

Abbreviations, annotations and conventions used in the Mark Scheme	l $=$ alternative and acceptable answers for the same marking point $;$ $=$ separates marking points NOT $=$ answers which are not worthy of credit () $=$ words which are not essential to gain credit $=$ (underlining) key words which must be used to gain credit $\overline{\text { ecf }}$ $=$ error carried forward AW $=$ alternative wording ora $=$ or reverse argument		
Question	Expected answers	Marks	Additional guidance
4	Definition - maximum 3 marks $\mathrm{Mg}^{2+}(\mathrm{g})+2 \mathrm{Cl}(\mathrm{g}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{~s})(1)$ The enthalpy change that accompanies the formation of one mole of a solid (compound) (1); from its constituent gaseous ions (1) Born-Haber cycle - maximum 5 marks Correct formulae on cycle (1) Correct state symbols (1) Use of 2 moles of $\mathrm{Cl}(\mathrm{g})$ ie 246 (1) Use of 2 moles of $\mathrm{Cl}^{-}(\mathrm{g})$ 1.e. 698 (1) $-2526 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (1) Comparison - maximum 3 marks Any three from Na^{+}has a larger radius than Mg^{2+} / ora (1) Br^{-}has a larger radius than $\mathrm{Cl} /$ ora (1) Na^{+}has a lower charge than Mg^{2+} / ora (1) Strongest attraction is between Mg^{2+} and $\mathrm{Cr} / \mathrm{MgCl}_{2}$ has the strongest attraction between its ions / ora (1) Or Na^{+}has a lower charge density than Mg^{2+} / ora (1) Br^{-}has a lower charge density than $\mathrm{Cl}^{-} /$ora (1) Strongest attraction between ions which have the highest charge density / MgCl_{2} has the strongest attraction between its ions / ora (1) And QWC One mark for correct spelling, punctuation and grammar in at least two sentences (1)	12	Allow marks from an equation Allow energy released / energy change Not energy required Allow ionic compound / salt Every formula must have the correct state symbol at least once Allow -2403 / - 2875 (2) Allow -2752 (1) Unit required Penalise the use of incorrect particle only once within the answer. Penalise it the first time an incorrect particle is mentioned

Mark Scheme 2815/02 January 2007

Abbreviations, annotations and conventions used in the Mark Scheme	l $=$ alternative and acceptable answers for the same marking poin NOT $=$ separates marking points answers which are not worthy of credit () $=$ words which are not essential to gain credit $\overline{\text { ecf }}$ $=$ (underlining) key words which must be used to gain credit AW $=$ arror carried forward ora $=$ or reverive wording argument	
Question	Expected Answers	Marks
(ii) (iii) (b) (c) (d) (i)	 The spare bonds at each end are optional. \checkmark Triglyceride has a fatty/carboxylic acid esterified/attached instead of the phosphate \checkmark. Accept triglyceride has three fatty acids attached, but not simply has no phosphate. Hydrophilic/polar etc Hydrophobic/nonpolar etc Both labels for \checkmark. Active site has (specific)shape to fit the/substrate phospholipid \checkmark Accept answer based on R grops in active e site matching those on substrate. Catalytic site is in correct position to catalyse hydrolysis of the C_{2} ester group only / when bound to active site only the C_{2} ester is in correct position to be hydrolysed \checkmark. AW . To remove/hydrolyse fat stains \checkmark. Higher substrate concentration leads to increased number of collisions per unit time/ plenty of free active sites therefore rate $=k[S] \cdot \checkmark$ AW All the active sites are in use \checkmark; adding more substrate cannot increase rate/ rate depends on rate at which products leave the active site/ $[\mathrm{E}]$ is limiting factor/ reaction is zero order with respect to $\mathbf{S} \checkmark$.AW	1 1 1 1 1 1 1 2 1

\begin{tabular}{|c|c|c|}
\hline Abbreviations, annotations and conventions used in the Mark Scheme \& \begin{tabular}{ll}
\(l\) \& \(=\) alternative and acceptable answers for the same marking poin \\
\(;\) \& \(=\) separates marking points \\
NOT \& \(=\) answers which are not worthy of credit \\
() \& \(=\) words which are not essential to gain credit \\
\& \(=\) (underlining) key words which must be used to gain credit \\
\(\overline{\text { ecf }}\) \& \(=\) error carried forward \\
AW \& \(=\) alternative wording \\
ora \& \(=\) or reverse argument
\end{tabular} \& \\
\hline \& \& \\
\hline Question \& Expected Answers \& Marks \\
\hline 4 (a) \& \begin{tabular}{l}
 \\
A correct glycosidic link \(\checkmark\) Correct stereochemistry for each link \(\checkmark \checkmark\) They need all but one of the \(\mathrm{C}_{1}\) and \(\mathrm{C}_{4}\) hydrogen atoms to score both stereochemistry marks but can score 1 mark if only two are missing. \\
Skeletal structures accepted. \\
- linear/straight chain polymer \\
- hydrogen bonded to neighbouring chain \\
- hydrogen bonding between OH groups (any drawing here must be correct) \\
- microfibrils make up fibres with great tensile strength \\
- insoluble \\
Any four of these points. \\
QWC At least two sentences in which meaning is clear, and in which there are fewer than two mistakes of spelling, punctuation and grammar. \(\checkmark\)
\end{tabular} \& 3

4
4
1
8
45

\hline
\end{tabular}

Downloaded from http://www.thepaperbank.co.uk

Mark Scheme 2815/04 January 2007

\begin{tabular}{|c|c|c|}
\hline Abbreviations, annotations and conventions used in the Mark Scheme \& \(\left.\begin{array}{ll}l \& =\text { alternative and acceptable answers for the same marking poin } \\
\text {; } \& =\text { separates marking points }\end{array}\right]\)\begin{tabular}{ll}
NOT \& \(=\) answers which are not worthy of credit \\
() \& \(=\) words which are not essential to gain credit \\
ecf (underlining) key words which must be used to gain credit \\
ecf \& \(=\) error carried forward \\
AW \& \(=\) alternative wording \\
ora \& \(=\) or reverse argument
\end{tabular} \& \\
\hline Question \& Expected Answers \& Marks \\
\hline 1 (a) \& \begin{tabular}{l}
\(R_{f}\) value is distance moved by a component/spot/solute divided by distance moved by solvent. \\
Retention time is the time between injection and emergence (or detection) of a component.
\end{tabular} \& 2 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii) \\
(iii) \\
(iv)
\end{tabular} \& \begin{tabular}{l}
Partition / adsorption \\
Role of gas: carrier gas / mobile phase / to carry to sample through the chromatography column \(\checkmark\) \\
Role of liquid: stationary phase \\
Trace with two peaks drawn \\
Measure area under each peak \\
Find total area \(\checkmark\) \\
\(\%=(\) area of one peak/total area) \(\times 100 \% ~ \checkmark\)
\end{tabular} \& 1

2
1

3

\hline | (c) (i) |
| :--- |
| (ii) | \& | ${ }^{37} \mathrm{Cl} /{ }^{81} \mathrm{Br} / \mathrm{Cl}$ or Br isotopes that differ by mass of two (either ${ }^{37} \mathrm{Cl}$ or ${ }^{81} \mathrm{Br}$) or contains isotopes with 2 extra neutrons |
| :--- |
| If similar height halogen is bromine / bromine isotopes have similar / same abundance \checkmark |
| If in ratio 3:1 then halogen is chlorine / chlorine isotopes are in abundance ratio 3:1 | \& 2

\hline \& \& Total: 12

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline Abbreviations, annotations and conventions used in the Mark Scheme \& \(\left.\begin{array}{ll}l \& =\text { alternative and acceptable answers for the same marking poin } \\
\text { NOT } \& =\text { separates marking points } \\
\text { answers which are not worthy of credit }\end{array}\right\}\)\begin{tabular}{ll}
(\()\) \& words which are not essential to gain credit \\
\(\overline{\text { ecf }}\) \& \(=\) (underlining) key words which must be used to gain credit \\
AW \& \(=\) arror carried forward \\
ora \& \(=\) alternative wording \\
ereverse argument
\end{tabular} \& \\
\hline Question \& Expected Answers \& Marks \\
\hline \begin{tabular}{l}
2 (a) \\
(i) \\
(ii) \\
(iii) \\
(iv) \\
(v)
\end{tabular} \& \begin{tabular}{l}
Energy levels are quantised / energy levels are discrete / specific gap between energy levels in the H atom \(\checkmark\) \\
Electrons fall / drop back \(\checkmark\) from higher levels to different energy levels \(\checkmark\) \\
Convergence limit signifies the fall of an electron from (\(n=\)) infinity to a particular energy level / wavelength at which the electron is at the edge of the atom / point at which the atom is ionised / point at which electron orbitals or lines merge or close together \(\checkmark\) \\
Electron in ground state / \(n=1\) / lowest energy level / Lyman series can be used \\
Multiply by 1000 and divide by \(L\) to give \(J\) per atom
\[
1312 \times 1000 / 6.02 \times 10^{23}=2.179 \times 10^{-18} \mathrm{~J}
\]
\[
\begin{aligned}
\& E=h f \text { so } f=E / h \\
\& f=2.179 \times 10^{-18} \mathrm{~J} / 6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\
\& =3.287 \times 10^{15} \mathrm{~s}^{-1}
\end{aligned}
\]
\[
\lambda=c / f=3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} / 3.287 \times 10^{15} \mathrm{~s}^{-1}
\]
\[
=9.126 \times 10^{-8} \mathrm{~m}
\] \\
\(9.13 \times 10^{-8} \mathrm{~m}\) answer to three sig figs \\
(allow 9.12 for answer kept in calculator) \\
Use of correct formulae as above or using \(E=h c / \lambda\) \\
Correct use of \(L \checkmark\) \\
Correct answer of \(9.126 \times 10^{-8} \mathrm{~m}\) (allow 9.12 or 9.13) \(\checkmark\) \\
Answer to 3 sig figs \(\checkmark\)
\end{tabular} \& 1
2
1
1
1
1

1
4

\hline
\end{tabular}

Question	Expected Answers	Marks
(b) (i)	(i) (1 for each molecule circled)	
(ii)	Electronic / electron transitions / any mention of electrons being involved \checkmark From low to high energy levels / to excited states n to pi* / pi to pi* \checkmark	1
		1

Abbreviations, annotations and conventions used in the Mark Scheme	l $=$ alternative and acceptable answers for the same marking point $;$ $=$ separates marking points NOT $=$ answers which are not worthy of credit () $=$ words which are not essential to gain credit $\overline{\text { ecf }}$ $=$ (underlining) key words which must be used to gain credit AW $=$ alternatrive forward ora $=$ or reverse argume	
Question	Expected Answers	Marks
3 (a)	IR Similarities Any 2 of the following three peaks (must give the quoted range) peak corresponding to OH in all three $\left(3230-3550 \mathrm{~cm}^{-1}\right)^{\checkmark}$ peak corresponding to NH in all three $\left(3100-3500 \mathrm{~cm}^{-1}\right) \checkmark$ peak corresponding to CO in all three $\left(1000-1300 \mathrm{~cm}^{-1}\right)^{\checkmark}$ Differences only shown in the fingerprint region \checkmark Mass Spec similarities $M_{r}(75) /$ base peak will be the same \checkmark $M+1$ peak same \checkmark Differences Fragmentation pattern may show differences between isomers / specific example, eg $\mathrm{CH}_{3}+$ at $m / e 15 \checkmark$ QWC Use of any two terms from: functional group / amino group / hydroxy group / fingerprint / fragmentation / fragment ion(s) / base peak or molecular ion $/ M+1$ peak $/ \mathrm{m} / \mathrm{e}$	2 max 1 1 1 1 (MAX 5) 1
(b)	Glycine $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}_{2}$ Molecular mass = $\begin{aligned} & (12.000 \times 2)+(1.0078 \times 5)+14.0031+(15.9949 \times 2) \\ & =75.0319 \mathrm{~V}) \end{aligned}$ isomers of aminopropanol $\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{NO}$ molecular mass = $\begin{aligned} & (12.000 \times 3)+(1.0078 \times 9)+14.0031+15.9949 \\ & =75.0682 \quad \checkmark \end{aligned}$	
		Total: 8

Abbreviations, annotations and conventions used in the Mark Scheme		
Question	Expected Answers	Marks
4 (a)	```(M:M + 1 = 74.6:6.5) No. of carbon atoms = (6.5 < 100) / (74.6 < 1.1)\checkmark = 7.92 therefore eight carbons / C C ```	2

Question	Expected Answers	Marks
4 (b)	Infrared spectrum	
	Presence of sharp peak at approx. $1700 \mathrm{~cm}-1$ indicates $C=O \quad \checkmark$ Peak(s) at approx. $1300 \mathrm{~cm}^{-1}$ consistent with C-O \checkmark	1
	(broad) peak at $2500-3300 \mathrm{~cm}^{-1}$ shows O-H (not alcohol)	1
	present \checkmark)	
	NMR	
	Three sets of peaks means three chemical environments \checkmark Total of 8 hydrogen atoms present (allow if indicated in formula of compound) \checkmark	1
		1
	Peaks at approx. 2.3 ppm could be any one of:	
		1
	peaks at 7.3 and 7.9 ppm are:	
	 /aromatic protons \checkmark	1
	but peak area is 4 which means $\mathrm{C}_{6} \mathrm{H}_{4} \checkmark$ peak at approx. 12.5 ppm is:	1
	$-\mathrm{COOH} \checkmark$	1
	Mass spectrum	
	Base peak at $m / e=91$ produced by loss of $-\mathrm{COOH}(136-45)$	1
	OR peak at m/e = 119 shows loss of $-\mathrm{OH}(136-17) \checkmark$	1
		Maximum 9
	Data suggests structure is:	
		1
	(1,2- or 1,3-isomers equally acceptable) (allow ecf as $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{COOH}$ if nmr deduction was for $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{2}-$ at 2.3 ppm)	
		Total: 12

Downloaded from http://www.thepaperbank.co.uk

Mark Scheme 2815/06
 January 2007

Abbreviations, annotations and conventions used in the Mark Scheme	l $=$ alternative and acceptable answers for the same marking point NOT $=$ separates marking points NOT $=$ answers which are not worthy of credit ($)$ $=$ words which are not essential to gain credit $=$ (underlining) key words which must be used to gain credit ecf $=$ error carried forward AW $=$ alternative wording ora $=$ or reverse argument	
Question	Expected Answers	Marks
1 (a) (i) (ii) (iii) (b) (i) (ii)	$+3$ Cis and trans forms drawn in 3-D (only award these marks if C has been chosen) Type of isomerism is cis-trans/geometric (concentrated) hydrochloric acid/sodium chloride/ Other suitable named ionic chloride but not just chloride or Cl^{-} Ligand substitution / ligand exchange	

Abbreviations, annotations and conventions used in the Mark Scheme	l $=$ alternative and acceptable answers for the same marking poin NOT $=$ separates marking points answers which are not worthy of credit () $=$ words which are not essential to gain credit $\overline{\text { ecf }}$ $=$ (underlining) key words which must be used to gain credit AW $=$ error carried forward ora $=$ or reversere wording 	
Question	Expected Answers	Marks
2 (a) (b) (c) (i) (ii) (iii)	Emf/voltage/potential difference (of electrochemical cell) comprising a $\left(\mathrm{Cu} / \mathrm{Cu}^{2+}\right)$ half cell combined with a standard hydrogen electrode $1 \mathrm{~atm}, 1$ mol.dm ${ }^{-3}$, 298K (all 3 needed but can transfer mark if stated in (b)) Salt bridge and voltmeter Platinum electrode dipping into $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}^{+}$ Hydrogen gas feed (Accept a suitable alternative standard electrode) (See additional sheet for diagram) Decolorised / add starch which is decolorised Allow blue/black \rightarrow white or brown \rightarrow white Do not allow colourless moles $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}=23.20 \times 0.100 / 1000=0.00232$ moles $\mathrm{Cu}^{2+} \equiv \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-} /$ moles $\mathrm{Cu}^{2+}=0.00232$ moles But $25 \mathrm{~cm}^{3}$ of original $=10 \times 0.00232=0.0232$ moles Concentration of original $=1000 \times 0.0232 / 25$ Because concentration of Cu^{2+} is less than $1 \mathrm{~mol} \mathrm{dm}^{-3}$ / less than standard equilibrium moves to left (reducing +ve value of E)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 Total: 13

Abbreviations, annotations and conventions used in the Mark Scheme		
Question	Expected Answers	Marks
3 (a)	d-orbitals split 3 lower, 2 higher (accept diagram) in octahedral complexes visible light/light/energy absorbed to promote an electron from lower to higher orbital different ligands cause a different energy gap colour/frequency/wavelength of light absorbed depends on size of energy gap $\Delta \mathrm{E}$ colour transmitted is complementary to colour absorbed / light transmitted is colour we see Quality of written communication: Award 1 mark for the correct use of at least 3 of the following terms: orbitals, visible (light), absorbed, transmitted, complementary, splitting, energy gap, $d_{x y}$ etc, $\Delta E=h f$, photon, frequency, wavelength Yellow complex (accept ligand X) Because max absorbance is in blue region (of visible light) / yellow is complementary colour to maximum absorbance (blue) Allow violet and blue light absorbed	1 1 1 1 1 1 1 1 1 Total: 9

Abbreviations, annotations and conventions used in the Mark Scheme	l $=$ alternative and acceptable answers for the same marking point NOT $=$ separates marking points Nanswers which are not worthy of credit () $=$ words which are not essential to gain credit $\overline{\text { ecf }}$ $=$ (underlining) key words which must be used to gain credit AW $=$ earror carried forward ora $=$ or reverse wording 	
Question	Expected Answers	Marks
4 (a) (i) (ii) (b) (i) (ii) (c) (i) (ii)	Stainless steel + corrosion resistance or alloys for tools + hardness or other named alloy/use/property Allow chrome plating with attractive or barrier to corrosion Chromium $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5} 4 s^{1}$ (allow.... $4 s^{1} 3 d^{5}$) $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+14 \mathrm{H}^{+}+6 \mathrm{Fe}^{2+} \rightarrow 2 \mathrm{Cr}^{3+}+6 \mathrm{Fe}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$ $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} / \mathrm{Cr}^{3+}$ has more positive electrode potential Therefore $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ is the stronger oxidising agent which oxidises Fe^{2+} to Fe^{3+} (ora) Emf $=(+) 0.56 \mathrm{~V}$ Orange to yellow Hydroxide ions react with or remove H^{+}ions Position of equilibrium moves to the right (to produce more H^{+}ions and $\mathrm{CrO}_{4}{ }^{2-}$ which is yellow)	

Abbreviations, annotations and conventions used in the Mark Scheme	$\left.\begin{array}{ll}l & =\text { alternative and acceptable answers for the same marking point } \\ \text { NOT } & =\text { separates marking points }\end{array}\right]$Nanswers which are not worthy of credit ($)$ $=$ words which are not essential to gain credit $=$ (underlining) key words which must be used to gain credit ecf $=$ error carried forward AW $=$ alternative wording ora $=$ or reverse argument	
Question	Expected Answers	Marks
5 (a) (b) (i) (ii) (c)	For colour, need at least 1 d-electron and a space in higher energy d-orbital for it to be promoted to. Cu^{+}has no space / has a full d-sub shell. Pigment (accept dye)/ colouring paints Dative covalent/co-ordinate Red-brown solid is copper / Cu Blue solution is $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} / \mathrm{Cu}^{2+}(\mathrm{aq}) / \mathrm{CuCl}_{2}$ $2 \mathrm{CuCl} \rightarrow \mathrm{Cu}+\mathrm{CuCl}_{2} / 2 \mathrm{Cu}^{+} \rightarrow \mathrm{Cu}+\mathrm{Cu}^{2+}$ $\mathrm{Cu}(\mathrm{I})$ compounds are unstable in solution / Disproportionate or explained.	1 1 1 1 1 1 1 1 Total: 8

Mark Scheme 2816/01
 January 2007

Abbreviations, annotations and conventions used in the Mark Scheme		
Question	Expected Answers	Marks
1 (a) (i) QWC (ii) (iii)	H_{2} : Exp 2 has 2.5 times [H_{2}] as Exp 1 and rate increases by $2.5 \checkmark$, so order $=1$ with respect to $\mathrm{H}_{2} \checkmark$ NO: Exp 3 has $3 \times[\mathrm{NO}]$ as Exp 2; and rate has increased by $9=3^{2} \checkmark$, so order $=2$ with respect to NO \checkmark At least two complete sentences where the meaning is clear. rate $=K[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right] \checkmark$ $\begin{aligned} & k=\frac{\text { rate }}{[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right]} / \frac{2.6}{0.10^{2} \times 0.20} \checkmark \\ & =1300 \checkmark \quad \text { units: } \mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1} \checkmark \end{aligned}$ allow 1 mark for 7.69×10^{-4} or $1.3 \times 10^{\times}(\times$not 3$)$	[2] [2] [1] [1] [3]
(b) $\begin{aligned} & \text { (i) } \\ & \\ & \text { (ii) }\end{aligned}$	$\begin{aligned} & 11 / 2 \mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{\longrightarrow} \mathrm{O}_{3}(\mathrm{~g}) / \\ & \mathrm{O}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{ } \mathrm{O}_{3}(\mathrm{~g})^{\checkmark} \end{aligned}$ NO is a catalyst \checkmark as it is (used up in step 1 and) regenerated in step 2/ not used up in the overall reaction \checkmark allow 1 mark for ' $\mathrm{O} / \mathrm{NO}_{2}$ with explanation of regeneration.' Rate $=k[\mathrm{NO}]\left[\mathrm{O}_{3}\right] \checkmark$ Species in rate equation match those reactants in the slow step / rate determining step \checkmark	[3] [2]
		Total: 14

Abbreviations, annotations and conventions used in the Mark Scheme	$\left.\begin{array}{ll}1 & =\text { alternative and acceptable answers for the same marking point } \\ \text { NOT } & =\text { separates marking points } \\ \text { = answers which are not worthy of credit } \\ \text { = words which are not essential to gain credit }\end{array}\right)$	
Question	Expected Answers	Marks
2 (a)	$K_{c}=\frac{\left[\mathrm{PCl}_{3}\right]\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{PCl}_{5}\right]} \checkmark$	[1]
(b) (i) (ii)	$\mathrm{PCl}_{5}>0.3 \mathrm{~mol} \mathrm{dm}^{-3} ; \mathrm{PCl}_{3}$ and $\mathrm{Cl}_{2}<0.3 \mathrm{~mol} \mathrm{dm}^{-3}$ At start, system is out of equilibrium with too much PCl_{3} and Cl_{2} and not enough PCL_{5} / $\frac{0.3 \times 0.3}{0.3}=0.3$ is greater than $K_{c}=0.245 \mathrm{~mol} \mathrm{dm}^{-3} \checkmark$	[1] [1]
(c) (i) (ii)	K_{c} does not change as temperature is the same Fewer moles on left hand side \checkmark system moves to the left to compensate for increase in pressure by producing less molecules \checkmark	[1] [2]
(d) (i) (ii)	K_{c} decreases (as more reactants than products) $\sqrt{ }$ Forward reaction is exothermic/ reverse reaction is endothermic \checkmark equilibrium \longrightarrow left to oppose increase in energy/ because K_{c} decreases \checkmark	[1] [2]
(e) (i) (ii)	$\begin{aligned} & 4 \mathrm{PCl}_{5}+10 \mathrm{MgO} \longrightarrow \mathrm{P}_{4} \mathrm{O}_{10}+10 \mathrm{MgCl}_{2} \checkmark \\ & 100 \mathrm{~g} \mathrm{P}_{4} \mathrm{O}_{10}=\frac{100}{284} / 0.35(2) \mathrm{mol} \checkmark \\ & \text { moles } \mathrm{PCl}_{5} \text { needed }=4 \times 0.352=1.408 / 1.4 \mathrm{~mol} \checkmark \\ & \text { mass } \mathrm{PCl}_{5}=1.4(08) \times 208.5=293.568 / 294 \mathrm{~g} / 291.9 \mathrm{~g} \\ & \checkmark \text { for use of } 284 \text { for } \mathrm{P}_{4} \mathrm{O}_{10} \text { and } 208.5 \text { for } \mathrm{PCl}_{5} \\ & 73.4 / 72.975 / 72.3 \mathrm{~g} \text { scores } 3 \text { marks (no use of '4' factor) } \\ & 18.35 \mathrm{~g} \text { from dividing by } 4 \text { scores } 3 \text { marks } \end{aligned}$	[1]
		Total: 14

Abbreviations, annotations and conventions used in the Mark Scheme	$\left.\begin{array}{ll}l & =\text { alternative and acceptable answers for the same marking point } \\ \text { NOT } & =\text { separates marking points } \\ \text { Nanswers which are not worthy of credit }\end{array}\right\}$= words which are not essential to gain credit $=$ (underlining) key words which must be used to gain credit $\overline{\text { ecf }}$ $=$ error carried forward AW $=$ alternative wording ora $=$ or reverse argument	
Question	Expected Answers	Marks
3 (a) (i) (ii)	Ionic product $K_{\mathrm{w}}=\left[\mathrm{H}^{+}(\mathrm{aq})\right]\left[\mathrm{OH}^{-}(\mathrm{aq})\right] \checkmark$ state symbols not needed	[1] [1]
(b)	$\begin{aligned} & \text { moles of } \mathrm{HCl}=\frac{5 \times 10^{-3} \times 21.35}{1000}=1.067 \times 10^{-4} \mathrm{~mol} \\ & \text { moles of } \mathrm{Ca}(\mathrm{OH})_{2}=\frac{1.067 \times 10^{-4}}{2}=5.34 \times 10^{-5} \mathrm{~mol} \checkmark \end{aligned} \quad \begin{array}{r} \text { concentration of } \mathrm{Ca}(\mathrm{OH})_{2}=40 \times 5.34 \times 10^{-5} \\ \\ \text { (}=2.136 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \\ 2 \text { marks for } 4.27 \times 10^{-3} / 8.54 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \\ \text { (no factor of 4) } \end{array}$	[3]
(c)	$\begin{aligned} & {\left[\mathrm{OH}^{-}\right]=2 \times 2.7 \times 10^{-3}=5.4 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}} \\ & {\left[\mathrm{H}^{+}(\mathrm{aq})\right]=\frac{K_{\mathrm{w}}}{\left[\mathrm{OH}^{-}(\mathrm{aq})\right]}=\frac{1.0 \times 10^{-14}}{5.4 \times 10^{-3}}=1.85 \times 10^{-12} \mathrm{~mol} \mathrm{dm}^{-3}} \\ & \checkmark \\ & \mathrm{pH}=-\log \left(1.85 \times 10^{-12}\right)=11.73 / 11.7 \end{aligned}$ ecf is possible for pH mark providing that the $\left[\mathrm{H}^{+}\right]$ value has been derived from $K_{w} /\left[\mathrm{OH}^{-}\right]$ If pOH method is used, $\mathrm{pOH}=2.27$. would get 1 st mark, $\mathrm{pH}=14-2.27=11.73$ gets 2nd mark. Commonest mistake will be to not double OH^{--}and to use 2.7×10^{-3} This gives ecf answer of 11.43/11.4, worth 2 marks. $\mathrm{pH}=11.13$ from dividing by 2 : worth 2 marks	[3]
(d)	$8 \checkmark$	[1]
		Total: 9

Abbreviations, annotations and conventions used in the Mark Scheme		
Question	Expected Answers	Marks
4 (a)	$\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}+2 \mathrm{CaSO}_{4} \checkmark$	[1]
(b)	$\begin{aligned} & \mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HPO}_{4}{ }^{2-}(\mathrm{aq}) / \\ & \mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq}) \rightleftharpoons 2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{PO}_{4}{ }^{3-}(\mathrm{aq})^{\checkmark} \\ & \text { (or equivalent with } \mathrm{H}_{2} \mathrm{O} \text { forming } \mathrm{H}_{3} \mathrm{O}^{+} \text {) } \end{aligned}$	[1]
(c) (i) (ii) (iii)	$\begin{aligned} & \mathrm{HPO}_{4}^{2-} \checkmark \\ & \mathrm{H}_{3} \mathrm{PO}_{4} \checkmark \\ & \mathrm{H}_{2} \mathrm{PO}_{4}^{-} \text {produced } \mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2} \text { or on } \mathrm{LHS} \text { of an attempted } \\ & \text { equilibrium equation } \\ & 2 \text { equations/equilibria to shown action of buffer } \checkmark \checkmark \\ & \text { from: } \\ & \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}^{+} \rightleftharpoons \mathrm{H}_{3} \mathrm{PO}_{4} / \\ & \mathrm{H}_{2} \mathrm{PO}_{4}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HPO}_{4}^{2-} \\ & \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{OH}^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}+\mathrm{HPO}_{4}^{2-} / \\ & \mathrm{H}^{+}+\mathrm{OH}^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{O} \end{aligned}$	[1] [1] [3]
		Total: 7

Abbreviations, annotations and conventions used in the Mark Scheme	$\left.\begin{array}{ll}1 & =\text { alternative and acceptable answers for the same marking point } \\ \text { NOT } & =\text { separates marking points } \\ \text { = answers which are not worthy of credit }\end{array}\right\}$($)$ words which are not essential to gain credit = (underlining) key words which must be used to gain credit $\overline{\text { ecf }}$= error carried forward AW $=$ alternative wording ora $=$ or reverse argument	
Question	Expected Answers	Marks
5 (a)	Sulphuric acid molecules form hydrogen bonds \checkmark Diagram showing hydrogen bonds between molecules: or H bond from $\mathrm{H}-\mathrm{O}$ to $\mathrm{O}-\mathrm{H}$ (as in water) hydrogen bonds break (on boiling) \checkmark	[3]
(b)	Correct equation for a metal Correct equation for a carbonate \checkmark Correct equation for a base \checkmark	[3]
(c) (i) (ii)	$\mathrm{SO}_{4}{ }^{2-} \longrightarrow \mathrm{H}_{2} \mathrm{~S}: \quad \mathrm{S}$ from +6 to $-2 \checkmark$ $\mathrm{I}^{-} \longrightarrow \mathrm{I}_{2}$: I from-1 to $0 \checkmark$ $10 \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-}+8 \mathrm{I}^{-} \longrightarrow 4 \mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O} \checkmark$	[2] [1]
(d)	A: $\quad \mathrm{CO} \checkmark$ $\mathrm{HCOOH} / \mathrm{H}_{2} \mathrm{CO}_{2} \longrightarrow \mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \checkmark$ $\mathrm{B}: \quad \stackrel{C}{\mathrm{C}}$ $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11} \longrightarrow 12 \mathrm{C}+11 \mathrm{H}_{2} \mathrm{O} \checkmark$ C: $\quad \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2} \checkmark$ $2 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2} \longrightarrow \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ Structure: accept any sensible structure of $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$	[2] [2] [3]
		Total: 16

Mark Scheme 2816/03 January 2007

PLAN (A)
A Test for iron(III) ions
A1 Add [hot] acid to dissolve the iron(III) oxide
A2 Add thiocyanate ions to produce a red colouration
Use of Hexacyanoferrate(II) ions, going blue, is an acceptable alternative
A3 Chemical equation correct: $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{SCN}^{-} \rightarrow\left[\mathrm{Fe}(\mathrm{SCN})\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{2+}+\mathrm{H}_{2} \mathrm{O}$ Allow equation for Fe^{3+} without water ligands

B Mass of zinc carbonate
B1 Shake/stir the calamine mixture and measure out a known volume/mass of it
B2 Add excess of specified acid
and statement/implication that ZnCO_{3} gives off a gas but $\mathrm{Zn}(\mathrm{OH})_{2}$ does not
$B 2$ is not awarded if candidate heats the reacting mixture
B3 Neat diagram of apparatus showing suitable method of gas measurement
Collection in gas syringe, inverted burette or measuring cylinder is acceptable Measurement of mass loss method requires [cotton] wool plug to be shown Gas absorption requires use of soda lime or a concentrated aqueous alkali

B4 Measure volume of gas produced when fizzing stops/ volume stops increasing
Mass loss method requires weighing to constant mass to be described Gas absorption method also requires weighing to constant mass

B5 One accuracy precaution

- Use of "inner tube" or similar and reason/ how it is used
- Repeat, until consistent readings are obtained or take mean
- Use of acid/water pre-saturated with CO_{2} to reduce solubility of the gas

B6 Equation for reaction: $\mathrm{ZnCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
and links mass of ZnCO_{3} used to capacity of gas collector by calculation
Absorption method must calculate minimum mass of active absorbent needed
B7 Calculation of the [minimum] volume/concentration of acid required

C \% by mass of zinc carbonate

C1 Filters a known mass/volume of calamine to collect the [suspended] solid.
C2 Uses Buchner/ reduced pressure filtration
or filters with high quality filter paper or filters more than once or is aware of the problem that some solid may go through filter paper

C3 Uses a pre-weighed filter paper and washes the solid collected [with water]
C4 Dries the solid to constant mass in an oven [at low temperature] or desiccator

C5 Uses the mass of zinc carbonate from " B " and mass of residue obtained to deduce \%. Specimen calculation with figures for B is needed for mark C5

S Safety and sources

S1 Hazard researched for the acid used in the procedure, plus safety measure No mark if hazard is overstated of

S2 References to two secondary sources quoted as footnotes or at end.
Books must have page numbers
Internet reference must go beyond the first slash of web address Accept one specific reference to Hazcards without any qualification

S3 QWC: text is legible and spelling, punctuation and grammar are accurate
Allow mark for not more than five errors in spelling, punctuation or grammar.
S4 QWC: information is organised clearly and coherently

- Is a word count given and within the limits 450-1050 words?

Accept a total word count or any word numbering in the margin

- Is scientific language used correctly - allow one error without penalty.
- Are the descriptions of both parts of the method presented logically?

TEST (B)

Page 3 (Part 1) Measurements
Black solid/residue formed or green/turquoise \rightarrow black colour change
Four weighings clearly listed, recorded to 2 (or 3) d.p., and unit given somewhere
Fourth weighing is within 0.02 g of the third (ie constant mass)
If the mass increases, it must be within 0.01 g
Mass of residue and mass of malachite both shown (and correctly subtracted)

Accuracy

Calculate the supervisor's $\%^{\text {mass of residue } / \text { mass of malachite }}$ (to one decimal place)
Calculate candidate's $\%$ mass of residue $/$ mass of malachite
If \% mass of residue is within 1.5% of supervisor's $\%$ value $\rightarrow 2$ marks
If \% mass of residue is within 3.0% of supervisor's \% value $\rightarrow 1$ mark

Page 4 (Part 2) Calculation of M_{r} of malachite

(a) "2" shown in front of CuO
(b) M_{r} of $\mathrm{CuO}=79.5$

Moles of $\mathrm{CuO}=$ mass of residue $/ 79.5$ correctly calculated
(c) n (malachite) $=0.5 \times n(\mathrm{CuO})$

This [first] mark cannot be awarded ecf to a 1:1 ratio in the equation above.
M_{r} of malachite correctly calculated [$=\mathrm{mass} /$ number of moles]

Page 6 (Part 3) Observations

Fizzing/ effervescence/ bubbles produced
and malachite dissolves or blue solution produced
Yellow/mustard/brown precipitate/solid forms
State word is required

Page 7 (Part 3) Titration readings

(10 marks)

Mass readings

Check the following four points. Award one mark if all criteria are met

- Both mass readings must be listed with units shown (somewhere)
- All masses should be recorded to two (or three) decimal places
- Subtraction to give mass of \mathbf{Y} must be correct.
- Labelling of the masses must have minimum of the words "bottle"/"container"

Presentation of titration data

All 5 correct $\rightarrow 2$ marks: 4 correct $\rightarrow 1$ mark

- \quad Correctly labelled table (initial and final - aw) used to record burette data
- Trial titre is shown and clearly labelled (eg by "T" or " R " but not by " 1 ")
- All "accurate" burette data are quoted to $0.05 \mathrm{~cm}^{3}$ (ie 2 decimal places)
- All subtractions are correct (these must be checked)
- Units, cm^{3} or ml , must be given somewhere (once in or alongside the table is sufficient)

Self-consistency of titres
Candidate's two accurate titres should agree within $0.15 \mathrm{~cm}^{3}$.
Mean titre correctly calculated, with " cm^{3} or ml" unit given
Mean should be correctly calculated and quoted to two d.p.
Do not penalise absence of units again, if already done in the previous section.
Accuracy- 5 marks are available
$T=$ candidate's adjusted mean titre $\mathbf{x}^{\text {supervisor's mass } / \text { candidate's mass }}$
\boldsymbol{T} is within $0.30 \mathrm{~cm}^{3}$ of mean supervisor's value $\quad \rightarrow \quad$ [5 marks]
\boldsymbol{T} is within $0.50 \mathrm{~cm}^{3}$ of mean supervisor's value $\quad \rightarrow \quad$ [4]
\boldsymbol{T} is within $0.70 \mathrm{~cm}^{3}$ of mean supervisor's value $\quad \rightarrow \quad$ [3]
\boldsymbol{T} is within $0.90 \mathrm{~cm}^{3}$ of mean supervisor's value $\quad \rightarrow \quad$ [2]
\boldsymbol{T} is within $1.20 \mathrm{~cm}^{3}$ of mean supervisor's value $\rightarrow \quad$ [1 mark]

Spread penalty:

Spread is defined as the difference between the titres used by candidate to compute the mean or the difference between the two closest accurate titres (whichever is the greater).

- if accurate readings differ by more than $0.50 \mathrm{~cm}^{3}$, subtract 1 mark
- if accurate readings differ by more than $0.70 \mathrm{~cm}^{3}$, subtract 2 marks
- if accurate readings differ by more than $0.90 \mathrm{~cm}^{3}$, subtract 3 marks
- if accurate readings differ by more than $1.20 \mathrm{~cm}^{3}$, subtract 4 marks
- if accurate readings differ by more than $1.50 \mathrm{~cm}^{3}$, subtract 5 marks

There are no negative marks for accuracy: the minimum is 0 (out of the 5 marks available).
Pages 8 + 9 (Part 4) Calculation from titration
(a) n (thiosulphate) $={ }^{20} / 248 \mathbf{x}^{\text {mean titre }} / 1000$

This mark is a "method" mark for knowing how to calculate n as above
(b) \boldsymbol{n} (iodine) correctly calculated

Expected answer $=0.5 \times(a)=$ approx 0.0009 mol
(c) $n\left(\mathrm{CuSO}_{4}\right)=" b " \times 2 \times 10$

This is a "method" mark for using mole ratio and scaling up
(d) M_{r} of malachite $=$ mass of X used $/$ number of moles $=2 \mathrm{~m} /(\mathrm{c})$

This method mark is awarded to candidates for quoting correct figures
M_{r} of malachite correctly calculated from answer (c)
Expect answer of approximately 230
Give 1 mark ecf for an Mr resulting from an incorrect use of the 1:2 mole ratio
(e) Mass of $\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2}=221$
or correct calculation of mass of water $\left(=M_{r}-221\right)$
$\mathbf{n}={ }^{(250-221)} /_{18}=1.6(1)$ (if data supplied was used)
Most candidates will use their own Mr to calculate n .

Pages 10-12 (Part 5) Evaluation

Award maximum 14 marks: 17 marking points are available.
(a) 5 marks
(i) Cooling with a lid reduces/prevents absorption of water [vapour]
(ii) The aim is to achieve "constant mass"
(iii) Repeat the whole procedure

Results should be consistent/very similar/the same to show reliability
(b) 6 marks maximum available (but only 5 on Question Paper):

Mark the best three strands (each 2 marks)
Marking points can be awarded in (a)(iii)

- In Part 1, the procedure is simpler or there are fewer measurements needed

So Part 1 has less cumulative error (ora)

- In the titration the end-point [colour change] is inaccurate/imprecise

The colours grey and off-white are similar or the grey colour disappears gradually, not suddenly

- In Part 1 the [percentage] error is high because some masses are small

Use larger quantity of malachite or a balance reading to $3 \mathrm{~d} . \mathrm{p}$.

- Titration is repeated (but the mass loss experiment was not)

Consistent or accurate titres were obtained with $0.1 \mathrm{~cm}^{3}$

- \% error for use of burette/pipette is lower than that for the balance or titration equipment is accurately calibrated

Reasonable attempt at a \% accuracy calculation to justify this statement
(c) 6 marks available (but only 4 on Question paper)

Balanced equation: $\mathrm{CuCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CuSO}_{4}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
No of moles of sulphuric acid used $=1 \times 10 / 1000=0.01$ or volume of acid $=0.01 \times 1000 / 1 /=10 \mathrm{~cm}^{3}$
$\mathrm{Cu}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CuSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
Combined equation: $\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2} \cdot \mathrm{nH}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{CuSO}_{4}+\mathrm{CO}_{2}+(n+3) \mathrm{H}_{2} \mathrm{O}$ Scores both equation marks. Allow 1 mark if " $\mathrm{H}_{2} \mathrm{O}$ " is balanced wrongly $10 \mathrm{~cm}^{3}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$ are needed to react with [0.01 mol of] $\mathrm{Cu}(\mathrm{OH})_{2}$ in malachite
or $20 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{H}_{2} \mathrm{SO}_{4}$ are required to react fully with malachite
[1]
$\mathrm{H}_{2} \mathrm{SO}_{4}(0.03 \mathrm{~mol})$ is an excess quantity
Excess acid ensures that all of the malachite reacts/dissolves

Advanced GCE Chemistry (3882/7882)
 January 2007 Assessment Series

Unit Threshold Marks

Unit		Maximum Mark	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{u}
$\mathbf{2 8 1 1}$	Raw	60	47	41	35	29	23	0
	UMS	90	72	63	54	45	36	0
2812	Raw	60	47	41	35	30	25	0
	UMS	90	72	63	54	45	36	0
2813A	Raw	120	94	85	76	67	59	0
	UMS	120	96	84	72	60	48	0
	Raw	120	94	85	76	67	59	0
2813C	UMS	120	96	84	72	60	48	0
	Raw	120	89	80	71	63	55	0
2814	Raw	120	96	84	72	60	48	0
	UMS	90	73	66	59	52	46	0
2815A	Raw	90	66	63	54	45	36	0
	UMS	90	72	63	54	45	36	0
2815C	Raw	90	68	60	52	45	38	0
	UMS	90	72	63	54	45	36	0
2815E	Raw	90	67	59	52	45	38	0
	UMS	90	72	63	54	45	36	0
2816A	Raw	120	96	86	76	66	56	0
	UMS	120	96	84	72	60	48	0
2816B	Raw	120	96	86	76	66	56	0
	UMS	120	96	84	72	60	48	0
2816C	Raw	120	90	79	68	57	46	0
	UMS	120	96	84	72	60	48	0

Specification Aggregation Results

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

	Maximum Mark	A	B	C	D	E	U
$\mathbf{3 8 8 2}$	300	240	210	180	150	120	0
$\mathbf{7 8 8 2}$	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	U	Total Number of Candidates
$\mathbf{3 8 8 2}$	14.6	35.2	53.6	77.1	92.7	100.0	401
$\mathbf{7 8 8 2}$	16.5	59.1	78.3	93.0	98.3	100.0	136

437 Candidates aggregated this series.
For a description of how UMS marks are calculated see:
http://www.ocr.org.uk/exam system/understand ums.html
Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre

(General Qualifications)
Telephone: 01223553998
Facsimile: 01223552627
Email: helpdesk@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

