Downloaded from http://www.thepaperbank.co.uk

Mark Scheme 2816/01 January 2006

Jan	2006
C 6411	2000

Ques	tion		Expected Answers	Marks
1	(a)		partial dissociation: HCOOH = H⁺ + HCOO ✓	[1]
	(b)	(i)	pH = -log (1.55 x 10 ⁻³) = 2.81/2.8 √ [H [*]] deals with negative indices over a very wide range/ pH makes numbers manageable /removes very small numbers √	[2]
		(ii)	$K_a = \frac{[H^{+}(aq)][HCOO^{-}(aq)]}{[HCOOH(aq)]} \checkmark \text{ (state symbols not needed)}$	[1]
		(iii)	$K_{a} = \frac{[H^{+}(aq)]^{2}}{[HCOOH(aq)]} = \frac{(1.55 \times 10^{-3})^{2}}{0.015}$ $= 1.60 \times 10^{-4} \text{ (mol dm}^{-3})^{\checkmark}$ $pK_{a} = -\log K_{a} = -\log (1.60 \times 10^{-4}) = 3.80 \checkmark$	[3]
		(iv)	Percentage dissociating = $\frac{(1.55 \times 10^{-3}) \times 100}{0.015} = 10.3 \% /$ $10\% \checkmark (working not required)$	
				[1]
	(c)	(i)	HCOOH + NaOH> HCOONa + H₂O √ state symbols not needed	[1]
		(ii)	$n(HCOOH) = 0.0150 \times 25.00/1000 = 3.75 \times 10^{-4} \text{ volume of NaOH(aq) that reacts is 30 cm}^{3}$	
		(;;;)	so [NaOH] = $3.75 \times 10^{-4} \times 1000/30 = 0.0125 \text{ mol dm}^{-3} \checkmark$ $K_{W} = [H^{+}(aq)][OH^{-}(aq)] \checkmark$	[2]
		(iii)	pH = $-\log(1 \times 10^{-14}/0.0125)$ = 12.10/12.1 \checkmark (calc 12.09691001)	[3]
The state of the s		(iv)	metacresol purple v pH range coincides with pH change during sharp rise OR pH 6-10 /coincides with equivalence point/end point	[2]
				Total: 16

Question	Expected Answers	Marks
2 (a)	$K_c = \frac{[HI]^2}{[H_2][I_2]} \checkmark$	[1]
(b) (i) (ii)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[2]
	= 18 (to 2 sig figs) √ no units √ (or ecf based on answers to (i) and/or (a))	[3]
(c)	\mathcal{K}_c is constant \checkmark Composition of mixture is the same \checkmark	[2]
(d)	(Forward) reaction is exothermic (ora) \checkmark because equilibrium moves to the left / K_c is less \checkmark	[2]
(e) (i)	$I_2(aq) + H_2S(g) \longrightarrow 2HI(aq) + S(s)$ species and balance \checkmark state symbols: accept (s) for I_2 ; (aq) for $H_2S \checkmark$ amount I_2 reacted = 1.89 mol / HI formed = 3.44 mol \checkmark theoretical amount HI produced = 3.78 mol/484 g \checkmark	[2]
(iii)	% yield = $\frac{3.44 \times 100}{3.78}$ or $\frac{440 \times 100}{484}$ = 91.0 % \checkmark [HI] = $\frac{3.44 \times 1000}{750}$ = 4.58/4.59 mol dm ⁻³ \checkmark pH = -log 4.59 = -0.66 \checkmark	[3] [2] Total: 17

Question	Expected Answers	Marks
3	From graph, constant half-life	
	Therefore 1st order w.r.t. [CH ₃ COCH ₃] \(\sigma\)	[2]
	From table, rate doubles when [H¹] doubles ✓	
	Therefore 1st order w.r.t. [H']	[2]
	From table mate stand dama when IT I doubled a	
	From table, rate stays same when $[I_2]$ doubles \checkmark Therefore zero order w.r.t. $[I_2]$	
	Order with no justification does not score.	[2]
	774 - 10 13 CH COCH 3 1/	[4]
	rate = $K[H^+][CH_3COCH_3] \checkmark$ (from all three pieces of evidence)	
	$k = \frac{\text{rate}}{[H^+][CH_3COCH_3]} / \frac{2.1 \times 10^{-9}}{0.02 \times 1.5 \times 10^{-3}} \checkmark$	
	$= 7.0 \times 10^{-5} \text{ y dm}^3 \text{ mol}^{-1} \text{ s}^{-1} \text{ y}$	[4]
	accept 7×10^{-5}	
	rate determining step involves species in rate equation 🗸	
	two steps that add up to give the overall equation √	
	The left hand side of a step that contains the species in	
	rate-determining step <a>i.e. , for marking points 2 and 3:	
	$CH_3COCH_3 + H^{+} \longrightarrow [CH_3COHCH_3]^{+}$	
	$[CH_3COHCH_3^*] + I_2 \longrightarrow CH_3COCH_2I + HI + H^*$	
	organises relevant information clearly and coherently,	[3]
	using specialist vocabulary where appropriate	[-1
	Use of the following four words/phrases:	
	constant, half-life, order, doubles/x2 √	W A W
		[1] Total: 14
		10681. 14

Question			Expected Answers	Marks
4	(a)	(i)	(+)1 ✓	[1]
		(ii)	N N O O N N N O O	
			Look for atoms bonded together. AND other lone pairs.	[1]
	(b)	(i)	C ₁₃ H ₁₈ O ₂ ✓	
		(ii)	any chemical that reacts to produce gas: e.g. carbonate and $CO_2 \checkmark$ accept: metal more reactive than Pb and H_2	
			balanced equation to match chemical added ✓	[3]
	(c)		$M_r(\text{Lidocaine}) = 236 \checkmark$ Moles Novocaine = $100 \times 10^{-3}/236 = 4.24 \times 10^{-4} \checkmark$ Concentration of Novocaine = $4.24 \times 10^{-4} \times (1000/5)$ = $0.0847/0.0848/0.085 \text{ mol dm}^{-3} \checkmark$	[3]
	(d)		mass $C = 12 \times \frac{3.74}{44.0} = 1.02 \text{ g}$ / moles $CO_2 = \frac{3.74}{44} = 0.085 \text{ mol}$ \(\square \text{mass H} = \frac{2}{18} \times 0.918 = 0.102 \text{ g} \)/ moles $H_2O = \frac{0.918}{18} = 0.051 \text{ mol}$ \(\square \text{ratio } C : H = \frac{1.02}{12} : \frac{0.102}{1} = 0.0850 : 0.102 = 5 : 6 / 10 : 12/\text{ratio } CO_2 : H_2O = 5 : 3 / 10 : 6 \times \text{mass } O = 1.394 - (1.020 + 0.102) = 0.272 \text{ g} \)/ using 1.394 \(\text{g} \) eugenol and $M_r = 164$, shows that 1	[2]
			molecule contains 2 atoms of $O \checkmark$ \therefore molecular formula = $C_{10}H_{12}O_2 \checkmark$	[1]
		• • • • • • • • • • • • • • • • • • • •		Total: 13

