OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary GCE

CHEMISTRY

2813/03/TEST

Practical Examination 1 (Part B - Practical Test)
Tuesday 18 JANUARY 2005 Morning 1 hour 30 minutes
Candidates answer on the question paper.
Additional materials:
Data Sheet for Chemistry
Candidate's Plan (Part A of the Practical Examination)
Scientific calculator

Candidate
Candidate Name
Centre Number Number

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces provided on the question paper.
- Read instructions and questions carefully.

INFORMATION FOR CANDIDATES

- In this part of the Practical Test, you will be assessed on the Experimental and Investigative Skills:

Skill I Implementing
Skill A Analysing evidence and drawing conclusions
Skill E Evaluating evidence and procedures

- You may use an electronic calculator.
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE		
Qu.	Max.	Mark
Planning	16	
Implementing \& Analysing	30	
Evaluating	14	
TOTAL	60	

[^0]Answer all the parts.

Introduction

The main aim of the experiments is to investigate the reaction between phosphoric(V) acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$, and sodium hydroxide.
It is possible that this reaction could produce $\mathrm{NaH}_{2} \mathrm{PO}_{4}, \mathrm{Na}_{2} \mathrm{HPO}_{4}$ or $\mathrm{Na}_{3} \mathrm{PO}_{4}$.
Three chemicals are provided for the titration.

- Solution \mathbf{G} is aqueous sodium hydroxide containing 4.40 g of NaOH in $1.00 \mathrm{dm}^{3}$ of solution.

- Liquid \mathbf{H} is a concentrated aqueous solution of phosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$.
- Phenolphthalein solution is the indicator.

Corrosive

Part 1 Titration of aqueous NaOH with aqueous $\mathrm{H}_{3} \mathrm{PO}_{4}$ Skill I (Implementing)

Record all your readings in the spaces on page 3.

Put approximately $20 \mathrm{~cm}^{3}$ of distilled (or de-ionised) water into the volumetric flask provided. Weigh the flask and water.
Ask your teacher to put about $1 \mathrm{~cm}^{3}$ of phosphoric acid, \mathbf{H}, into your volumetric flask. Weigh the flask again with the phosphoric acid and water.

Make the mixture in the volumetric flask up to $250 \mathrm{~cm}^{3}$ using distilled water. Mix this solution thoroughly before using it for your titrations.
Fill the burette with aqueous $\mathrm{NaOH}, \mathbf{G}$.
Using a pipette and filler, transfer $25.0 \mathrm{~cm}^{3}$ of your diluted solution of \mathbf{H} into a conical flask.
Add about 3 drops of phenolphthalein indicator.
Carry out a rough/trial titration using solution \mathbf{G} from the burette.
Read the burette to the nearest $0.05 \mathrm{~cm}^{3}$.
The end-point is when the indicator changes from colourless to pale pink.
Now carry out the titration accurately and obtain two consistent values for the titre. In each case, use $25.0 \mathrm{~cm}^{3}$ of your diluted solution of \mathbf{H}.

Note: keep the remainder of your diluted solution of \mathbf{H} for use in Part 3.

Results

Use the spaces below to record all your readings.

Weighings

\qquad
mass of \mathbf{H} used $=$

Titration data (tabulated)

Summary

$25.0 \mathrm{~cm}^{3}$ of the diluted solution of \mathbf{H} required a mean titre of cm^{3} of solution G.
Show the readings you used to obtain this value of the volume of \mathbf{G} by putting a tick (\checkmark) under these readings.

Safety

State and explain what you would do if some concentrated phosphoric acid, H, splashed on to your hand.
\qquad
\qquad
\qquad
\qquad

Part 2 Deducing the equation for the reaction of NaOH with $\mathrm{H}_{3} \mathrm{PO}_{4}$ Skill A (Analysing)

Use the Data Sheet for Chemistry supplied for any data you require. In all parts involving calculations, your working must be shown clearly. Give your answers to three significant figures, where appropriate.
(a) The phosphoric acid, \mathbf{H}, you used was 85.0% pure by mass. Calculate the mass of pure $\mathrm{H}_{3} \mathrm{PO}_{4}$ you weighed out.
(b) Calculate the number of moles of $\mathrm{H}_{3} \mathrm{PO}_{4}$ in the $250 \mathrm{~cm}^{3}$ of solution you made up.
answer $=$ \qquad mol
(c) Calculate the number of moles of $\mathrm{H}_{3} \mathrm{PO}_{4}$ used in each titration.
(d) Solution G contained $4.40 \mathrm{~g} \mathrm{dm}^{-3}$ of NaOH . Calculate the concentration of NaOH , in $\mathrm{mol} \mathrm{dm}^{-3}$, in \mathbf{G}.
answer =
\qquad $\mathrm{mol} \mathrm{dm}^{-3}$
(e) Calculate the number of moles of NaOH used in the mean titre.
(f) Use your answers to (c) and (e) to calculate how many moles of NaOH react with 1 mol of $\mathrm{H}_{3} \mathrm{PO}_{4}$. Show your working and give your answer to the nearest whole number.
answer =
mol
(g) There are three possible reactions of NaOH with $\mathrm{H}_{3} \mathrm{PO}_{4}$, shown by the equations below.

$$
\begin{array}{ll}
\mathrm{NaOH}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{NaH}_{2} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} & \square \\
2 \mathrm{NaOH}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{HPO}_{4}+2 \mathrm{H}_{2} \mathrm{O} & \square \\
3 \mathrm{NaOH}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Na}_{3} \mathrm{PO}_{4}+3 \mathrm{H}_{2} \mathrm{O} & \square
\end{array}
$$

Put a tick (\checkmark) next to the equation which corresponds most closely to your answer to (f). Justify your answer.
\qquad
\qquad
\qquad

Part 3 Test tube reactions with aqueous phosphoric acid Skills I and A (Implementing and Analysing)

Salts formed by phosphoric acid are called phosphates. In these tests, you will investigate the solubility of two metal phosphates.

Pour some of your dilute aqueous phosphoric acid from the volumetric flask into a beaker. Use a 2 cm depth in two separate test tubes.
(a) Add a few drops of aqueous silver nitrate to the first test tube.

Irritant
Record the observation made, if any, below.
\qquad
\qquad Is silver phosphate soluble in water? Explain your answer.
\qquad
\qquad
\qquad
(b) Add a few drops of aqueous lead nitrate to the second test tube.

Record the observation made, if any, below.
\qquad
\qquad
Is lead phosphate soluble in water? Explain your answer.
\qquad
\qquad
\qquad
\qquad
(a) Why should the diluted solution of phosphoric acid in the volumetric flask be shaken thoroughly before using it for the titration?
\qquad
\qquad
(b) State two advantages of doing a trial titration before carrying out the accurate ones.
\qquad
\qquad
\qquad
\qquad
\qquad
(c) It is important that solutions of sodium hydroxide, such as G, are supplied in stoppered bottles. This is to prevent the reaction of sodium hydroxide with an acidic gas present in air.
Suggest which gas in air would react with sodium hydroxide and give a balanced equation for the reaction.
\qquad
\qquad
\qquad
(d) (i) Some $25.0 \mathrm{~cm}^{3}$ pipettes are calibrated to within $0.06 \mathrm{~cm}^{3}$. Calculate the possible percentage error when such a pipette is used.
(ii) Assume that the balance you used was accurate to within 0.01 g . The balance was used twice to determine the mass of phosphoric acid, H. Comment on the significance of the percentage errors associated with using the balance and the pipette in this experiment.
\qquad
\qquad
\qquad
(e) Another student carried out a similar titration to obtain more evidence about the reaction taking place between phosphoric acid and sodium hydroxide. She used 0.00300 mol of NaOH to neutralise the phosphoric acid.

The student calculated the mass of crystals that would be expected from each of the three possible reactions shown in Part $\mathbf{2 (g)}$ on page 5. The masses of crystals expected according to the first two equations are given below.
(i) Calculate the mass of crystals that would be expected from the third possible reaction, below.

$$
3 \mathrm{NaOH}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Na}_{3} \mathrm{PO}_{4}+3 \mathrm{H}_{2} \mathrm{O}
$$

$$
\begin{array}{rll}
\mathrm{NaOH}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow & \mathrm{NaH}_{2} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \\
& 0.36 \mathrm{~g} \\
2 \mathrm{NaOH}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow & \mathrm{Na}_{2} \mathrm{HPO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \\
& 0.21 \mathrm{~g}
\end{array}
$$

(ii) After the titration, the student allowed the contents of the titration flask to evaporate completely at room temperature for several days. At the end of that time, 0.54 g of colourless crystals were obtained at the bottom of the flask.
Comment on the student's result and suggest a possible reason for it.
\qquad
\qquad
\qquad
\qquad
\qquad

END OF QUESTION PAPER

BLANK PAGE

BLANK PAGE

[^0]: This question paper consists of 10 printed pages and 2 blank pages.

