Downloaded from http://www.thepaperbank.co.uk

2815/04 Methods of Analysis and Detection

January 2004

Mark Scheme

The following annotations may be used when marking:

Х	=	incorrect response (errors may also be underlined)
٨	=	omission mark
bod	=	benefit of the doubt (where professional judgement has been used)
ecf	=	error carried forward (in consequential marking)
con	=	contradiction (in cases where candidates contradict themselves in the
		same response)
- 6		a man in the second and fairs if a set firm as a

sf = error in the number of significant figures

Abbreviations, annotations and conventions used in the Mark Scheme:

() = words which are not essential to gain credit (underlining) = key words which <u>must</u> be used ecf = allow error carried forward in consequential marking AW = alternative wording ora = or reverse argument	
ora = or reverse argument	

Question	Expected Answers	Marks
1(a)	Electrons exist in discrete energy levels/quantised	1
(b)	(i) Electrons move from higher to lower energy levels	1
	This process emits energy as radiation	1
	(ii) E = hf = $6.63 \times 10^{-34} \times 5.68 \times 10^{14} \times 6.02 \times 10^{23}$	1
	= 227000(226703) J mol ⁻¹ (units not required)	1
(c)	The lines converge because the energy levels get closer together towards the 'edge' of the atom	1
(d)	Any suitable example e.g. analysis of blood serum	1
	To include preparing a solution, making a suitable dilution	1
	Use of calibration / standards	1
		Total: 9

Question	Expected Answers	Marks
2(a)	Reagent : 6M hydrochloric acid (accept conc.) NOT Restriction enzymes	1
	Conditions : Reflux / heat : long period of time / 24 hours	1 1
(b)	(i) W	1
	(ii) Large [H⁺] / pH5 is acid	1
	the NH₂ group is protonated and no COO [−] exist or shown on diagram	1 1
(c)	Diagram below could score 3 if appropriately annotated.	
	 detector chart recorder coiled tube containing a coated powder oven at the required temperature Sample is injected into spectrometer Carrier gas carries it through the column Column is heated Samples are separated by their attraction for the column/partition Different components have different times of emergence Samples may be analysed by mass spectrometry or by using standards Correct terminology e.g. carrier gas, mobile phase, stationary phase QoWC 	1 1 1 1 1 1 max 5 1
(d)	(i) $R_{\rm f}$ value is the distance moved by a component divided by the	
	distance moved by the solvent	1
	(ii) Retention time is the time between injection and the emergence of a component	1
		Total : 15

Question	Expected Answers	Marks
3(a)(i)	M : M+1 = 52 : 2.3	1
	No. of carbon atoms = $\frac{2.3 \times 100}{52 \times 1.1}$ = 4.02 = 4 carbons	1
(ii)	C ₄ H ₆ O	1
(b)	To give m/e 55 sample has lost 15 units hence CH ₃	1
	To give m/e 41 sample has lost 29 units hence C ₂ H ₅ or CHO (Penalise +ve ions –1)	1
(c)	<i>m/e</i> 41 could be $C_3H_5^+$ (NOT C_2HO^+ if CHO given in (b)) (check ecf from (a)(ii))	1
(d)	They will be equal	1
(e)	Any reasonable structure (check ecf from (a)(ii))	1
(f)	(i) CO and C_2H_4	2 x 1
	(ii) Suitable calculation showing working to identify C_2H_4	1
		Total : 11

Question	Expected Answers	Marks
4(a)	Mass peak is at <i>m/e</i> 72 If there is one O atom, the carbon and hydrogen atoms must add up to 56 mass units	1
	Since ${\bm D}$ is saturated this is $C_4 H_8$ /or other valid method	1
	Hence D is C₄H ₈ O (alternative method using M:M+1 acceptable)	1
(b)	Any 7 of the following points I.r. spectrum shows a strong absorption at 1720 cm ⁻¹ which suggests C=O	1
	No other obvious absorptions in the i.r. (i.e. no C-O, no –OH)	1
	N.m.r shows protons in 3 environments	1
	Splitting patterns shows one group of 3 protons (-CH ₃) at δ = 2.0, and a C_2H_5 group	1 1
	C_2H_5 group is shown by triplet and quartet (or equiv.)	1
	Major peak in mass spectrum is at <i>m</i> /e 43 which could be $C_3H_7^+$ or CH_3CO^+	1
	$C_{3}H_{7}^{+}$ does not fit the n.m.r. evidence OR more likely to be $CH_{3}CO^{+}$	1
	(Other worthy points to be decided once scripts seen)	
	D is CH ₃ CH ₂ COCH ₃	1
		Total : 10