Downloaded from http://www.thepaperbank.co.uk

2815/02 Biochemistry

January 2004

Mark Scheme

The following annotations may be used when marking:

Х	=	incorrect response (errors may also be underlined)

- ^ = omission mark
- bod = benefit of the doubt (where professional judgement has been used)
- ecf = error carried forward (in consequential marking)
- con = contradiction (in cases where candidates contradict themselves in the same response)
- sf = error in the number of significant figures

Abbreviations, annotations and conventions used in the Mark Scheme:

/ =	alternative and acceptable answers for the same marking point
; =	separates marking points
NOT =	answers not worthy of credit
() =	words which are not essential to gain credit
<u>(underlining)</u> =	key words which <u>must</u> be used
ecf =	allow error carried forward in consequential marking
AW =	alternative wording
ora =	or reverse argument

Downloaded from http://www.thepaperbank.co.uk Final Mark Scheme 2815/02 January 2004

Question	Expected Answers	Marks
1(a)	Five√	1
(b)(i)	Protease/peptidase√. Accept any specific example, but not hydrolase.	1
(ii)	To remove/dissolve protein stains/deposits AW✓	1
(iii)	✓ for COOH and for both $-NH_3^+$	1
(c)(i)		1
(ii)	At least two <u>zigzag</u> chains. Atoms not needed. Hydrogen bond✓ between C=O and NH ✓. This could be done with a diagram. Question total	2 7
2	 Find 11 points from the following: Denaturation involves enzyme losing its shape/tertiary structure/shape of active site√. by heat /high temperature√ caused by thermal vibration/ breaking of weak attractions√. AW by marked pH changes ✓ alter charges on COOH and NH₂ groups to/from COO⁻/NH₃⁺ √√ (one for each group). heavy metal ions/example ✓ interfere with van der Waals√ Competitive inhibition involves an inhibitor with a similar shape √to the substrate binding reversibly/ to the active site in direct competition √. (The substrate cannot react so quickly.) An example ✓. Inhibition is overcome by increasing [S]/V_{max} unchanged√. The last point could come from a graph. Non-competitive inhibition involves the inhibitor binding reversibly at another site ✓ on the enzyme, altering its shape ✓ enough to make binding/catalysis difficult . An example could include metal ions such as Hg²⁺ or Ag⁴√ combining with free SH groups√. Inhibition is not overcome by increasing [S] / V_{max} permanently lowered√ (or graph)√. The QWC should be given for showing understanding of the ideas of denaturation, and competitive and non competitive inhibition. Question Total 	11 1 12

3(a)(i)	✓ for each structure.	
	The name of glucose or galactose (must be with	
	correct compound)√.	
	СН ₂ ОН СН ₂ ОН	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	galactose glucose	
	(ignore α)	3
(ii)	$C_{12}H_{22}O_{11} + H_2O \rightarrow C_6H_{12}O_6 + C_6H_{12}O_6 \checkmark$	
	Accept 2C ₆ H ₁₂ O ₆ on the right.	1
(b .)		
(D)	An enzyme (lactase)√AW	2
	(Hot aqueous hydrochloric) acid ✓	2
(c)		
	Hydrogen bonding ✓ between OH on alcohol groups	2
(d)	and on water V. Accept diagram for second mark.	
	Energy is needed to break C-H/C-C bonds (in	
	Iactose)✓ More energy is produced by formation of	
	C=O/carbon-oxygen bonds(but not C-O) ✓ (in	
	carbon dioxide) / O-H bonds✓(in water).	
	In carbohydrates more of these bonds are formed	3
(e)	(therefore less exothermic overall).	
(-)		2
	$U_3 H_8 U_3 \neq and U_{18} H_{34} U_2 \neq$	13
	Question Total	

Question	Expected Answers	Marks
4(a)(i)	C₅H ₁₀ O₅ ✓	1
(ii)	Accept vertical/horizontal version and do not expect correct stereochemistry at chiral centres. ✓ for CHO and ✓ for the rest. Must have 5 carbons.	
	OHCCH(OH)CH(OH)CH(OH)CH₂OH	2
(iii)	Expect aldehyde ✓and alcohol ✓, but mark their structure. Must be names not formulae.	2
(iv)	It lacks one oxygen on C2 . If they write hydroxyl group the position need not be specified. \checkmark	1
(b)	X phosphorus/P ✓ Y phosphorus/P ✓ Z nitrogen/N ✓	3
(c) (i)	cytosine√. Accept cytidine	1
(ii)	GCA ✓	1
(iii)	Hydrogen bonding ✓	1
(iv)	At least one different t-RNA needed for each of the 22 amino acids/ more than one used for some amino acids ✓AW	1
	Question Total	13
	PAPER TOTAL	45