

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced GCE

CHEMISTRY 2815/04

Methods of Analysis and Detection

Tuesday

24 JUNE 2003

Morning

50 minutes

Candidates answer on the question paper.
Additional materials:
Data Sheet for Chemistry
Scientific calculator

Candidate Name	Centre Number	Candidate Number	

TIME 50 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

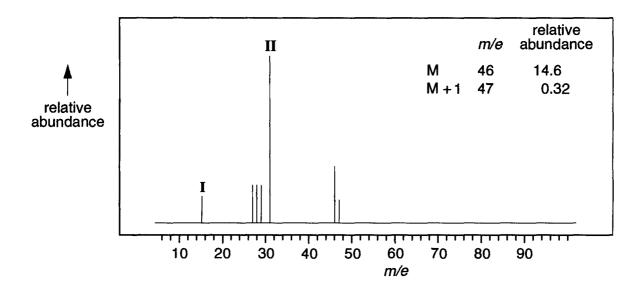
- The number of marks is given in brackets [] at the end of each question or part question.
- You will be awarded marks for the quality of written communication where this is indicated in the question.
- You may use a scientific calculator.
- You may use the Data Sheet for Chemistry.
- You are advised to show all the steps in any calculations.

FOR EXAMINER'S USE		
Qu. Max. Ma		Mark
1	9	
2	12	
3	13	
4	11	
TOTAL	45	

This question paper consists of 10 printed pages and 2 blank pages.

2

Answer all the questions.


For Examiner's Use

(a)		he mass spectrum of an organic compound, there is usually a small peak with a value one unit greater than that of the molecular ion, M.	an
	Wh	at is responsible for this peak?	
	••••		[1]
(b)	In th	ne mass spectrum of bromoethane, there is an additional peak at $(M+2)$.	
	(i)	What is responsible for the $(M+2)$ peak?	
			[1]
	(ii)	What will be the approximate ratio for the heights of the M and $(M+2)$ peaks bromoethane?	in
			[1]
(c)	Hov	molecules carbon monoxide, CO, and ethane, $\rm C_2H_4$, both have $\it M_r$ values of 2 vever, the two molecular ions can be distinguished using a high resolution mactrometer. Suggest why this is the case.	
			•••
	••••		•••
			21

3

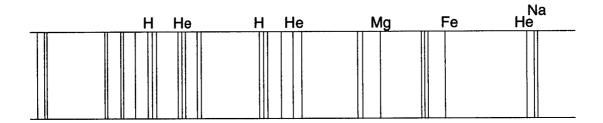
For Examiner's Use

(d) The mass spectrum shown below was obtained from a compound of formula C_xH_vO.

(i) Suggest the identity of the ions responsible for the labelled peaks in the spectrum.

I

(ii) Use any other data from the spectrum to determine the values of x and y, and hence the formula of the compound.


[2]

[Total: 9]

4

For Examiner's Use

2 Under certain conditions, atoms of many elements emit energy in the ultraviolet and visible regions of the spectrum. The spectrum below was obtained from the energy emitted by a star.

(a)	Explain the process which brings about the formation of one of the emission lines in the spectrum.
	[2]
(b)	For any given element present in the star, several series of lines are seen.
	Explain how a single series of lines is produced.
	•••••••••••••••••••••••••••••••••••••••

(c) In the spectrum, the line labelled Mg occurs in the visible region of the spectrum at a wavelength of 564 nm. It shows the presence of the element magnesium in the star.

[c, the velocity of light, = $3.00 \times 10^8 \,\mathrm{m \, s^{-1}}$; h, the Planck constant, = $6.63 \times 10^{-34} \,\mathrm{J \, s}$]

(i) Convert the wavelength of this line to a frequency.

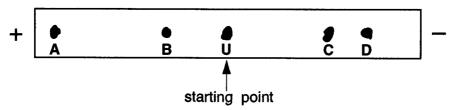
[1]

(ii) Calculate the energy of the quantum of electromagnetic radiation which produced this line.

(d)		4 .	ne ultraviolet/visible unds appearing colo	•	spectrum, and	this can
		atures of an orga sible region of the	nic compound neco	essary for it to	absorb ener	gy in the
				••••••		[2]
(e)	The diagram		ed ultraviolet/visible	spectrum of a	an indicator in	acid and
	1.0 ¬	violet	blue		yellow	red
	0.8					11-
	0.6		معانية ما ما			/
absorb	ance 0.4	, ,	cid solution kaline solution			\\
	0.2	<i>'</i>			·/	
	+-	400	500 wavelength/	'nm	600	
	Predict the c	olour of the indica	ator in each solution			
	acid solution	·	alkaline so	lution		[2]
(f)		ndicator has two fo t longer wavelengt	orms, X and Y . th than Y . Suggest v	why X absorbs	at longer wav	elength.
	••••••			••••••	***************************************	
	•••••		••••••••••	***************************************	***************************************	
		••••••••••			••••••	[2]
						[Total: 12]

•

6

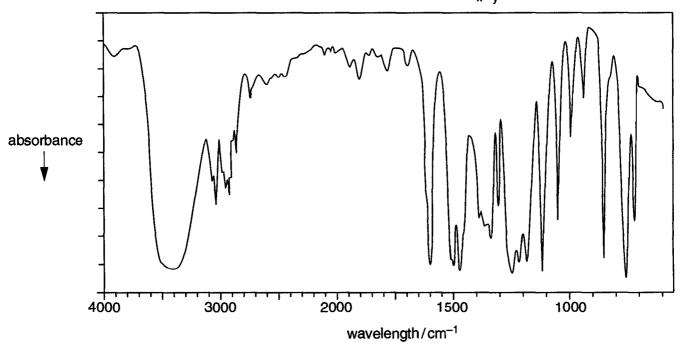

For Examiner's

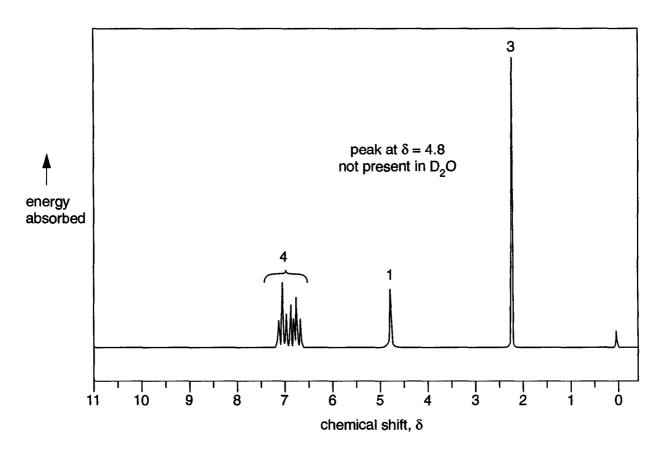
3	(a)	Thin-layer chromatography can rely either on partition or on adsorption depending on the conditions. Explain each of these processes in terms of thin-layer chromatography.
		partition
		adsorption
		[2]
	(b)	Write an expression for the term $R_{\rm f}$ value.
		[1]
	(c)	The diagram shows a two-way chromatogram produced from a mixture of amino acids.
		solvent 2
		starting X point
		solvent 1 — ➤
		(i) How many amino acids were present in the original sample?
		(ii) What reagent could be used to make the amino acids visible?
		[1]
		(iii) Circle the amino acid that travelled fastest in both solvents. [1]
		(iv) Label with an S the amino acid that did not move in solvent 2. [1]
		[1]

7

For Examiner's Use

(d) Mixtures of amino acids may also be separated by electrophoresis. The diagram shows the result of electrophoresis on such a mixture.


(i)	Label with P an amino acid with a positive charge.	[1]
(ii)	Which amino acid, A , B , C or D , has the lowest M_r ?	[1]
(iii)	The amino acid labelled U has no overall charge at the pH of the buffer used. experiment was repeated with a buffer of higher pH.	The
	Explain what would happen to the amino acid labelled U .	
		[2]
	nodification of simple electrophoresis is used in DNA profiling, which may be use ninal investigations.	d in
(i)	How are the DNA fragments detected?	
		[1]
(ii)	Apart from crime detection, suggest one other use of DNA profiling.	


(e)

[Total: 13]

[1]

- 4 In this question, one mark is available for the quality of written communication.
 - (a) Spectroscopic analysis relies on various atomic and molecular processes occurring at different energies. State the regions of the electromagnetic spectrum in which
 - (i) electronic transitions occur[1]
 - (ii) n.m.r. spectra are produced[1]
 - (b) The following spectra were obtained for compound R, C_xH_vO.

9

For Examiner's Use

The mass spectrum of compound \mathbf{R} shows a molecular ion peak at m/e = 108 and a peak at m/e = 91.

Use this spectral information to identify the functional group(s) present in compound R and to deduce a possible structure for R. You should identify all relevant data by which you arrive at your answer.
,
,
(c) Give one other peak that you would expect to see in the mass spectrum of compound R.
Explain your answer
Explain your answer.
[8]

Quality of Written Communication [1]

[Total: 11]