### Downloaded from http://www.thepaperbank.co.uk



# 2815/03 Environmental Chemistry June 2003

**Mark Scheme** 

#### Downloaded from http://www.thepaperbank.co.uk

2815/03 Mark Scheme June 2003

The following annotations may be used when marking:

X = incorrect response (errors may also be underlined)

^ = omission mark

bod = benefit of the doubt (where professional judgement has been used)

ecf = error carried forward (in consequential marking)

con = contradiction (in cases where candidates contradict themselves in the

same response)

sf = error in the number of significant figures

Abbreviations, annotations and conventions used in the Mark Scheme:

/ = alternative and acceptable answers for the same marking point

; = separates marking points NOT = answers not worthy of credit

() = words which are not essential to gain credit

(underlining) = key words which must be used

ecf = allow error carried forward in consequential marking

AW = alternative wording ora = or reverse argument

#### Downloaded from http://www.thepaperbank.co.uk

2815/03 Mark Scheme June 2003 1 (a) (i) More plastic/packaging/batteries/non-biodegradable/etc AW ✓ (ii) more landfill sites needed/plastic takes long time to decompose or is not biodegradable/more recycling. Answer must match their (i).AW ✓ (b) (i) Without oxygen ✓ (ii)  $C_6H_6 + 7^1/_2 O_2 \rightarrow 6CO_2 + 3H_2O$  or doubled  $\checkmark$ (iii) 1 mole of benzene produces 6 moles of carbon dioxide,ecf ✓ Molar mass of benzene is 78g ✓ Volume of carbon dioxide =  $6 \times 24 \times 1000/78 \text{ dm}^3$ 

 $= 1850 \text{ dm}^3$  (accept 1840 to 1850)  $\checkmark$ Find 3 marks similarly for route via moles of benzene = 12.82 mol.

> Question total 7

1

1

1

1

3

7

1

8

2

1

1

2

2

2 Look for seven points from the following: Addition of aluminium sulphate/Al<sup>3+</sup> ✓ solution neutralises the charge on small ✓ (colloidal) particles, letting them clump together (flocculation)√ or gelatinous precipitate of Al(OH)<sub>3</sub>  $\checkmark$  which absorbs the particles  $\checkmark$ .

Water is filtered ✓. Filters are cleaned ✓ by backwash.

Chlorination kills bacteria ✓ Detail of chlorination -- production of HCIO ✓, an oxidising agent√, and use of ammonia to make chloramine ✓

Use of ozone ✓ to prevent formation of toxic organochlorine ✓ compounds. Other relevant chemical points, eg aeration oxidises Mn<sup>2+</sup>/Fe<sup>2+</sup> can earn ✓ each. Not removal of hardness.

AW throughout, but note that the question asks for chemistry.

QWC mark for correct use of technical vocabulary - two of flocculation/ colloid/ filtration/precipitation/ sedimentation√.

Question total

- 3 (a) (i) Gas which traps/absorbs ✓ IR radiation emitted ✓ from earth/re-emits IR to earth. Not reflected.
  - (ii) Water (vapour)√
  - (iii) Symmetrical diatomic molecule/only one type of atom in N₂ / does not absorb IR ✓
  - Two of: Concentration √/residence time√/ where it absorbs in IR ✓ (iv)
  - Acid-base/ calcium hydroxide neutralises carbon dioxide/precipitation√ 2 (b) Not carbonation.
    - $CO_2 + Ca(OH)_2 = CaCO_3 + H_2O \checkmark$
  - (Gas was dissolved under increased/high pressure) (c)

Pressure reduced ✓ when bottle is opened and gas becomes less soluble √.AW

> Question total 10

## Downloaded from http://www.thepaperbank.co.uk 2815/03 Mark Scheme June 20

2815/03 June 2003

| 4 | (a)<br>(b)(i) | Al <sup>3+</sup> ✓ swapped for Si (+4) ✓ in the silicate structure/ Mg <sup>2+</sup> for Al <sup>3+</sup> ✓ leaving negative charge ✓. Give 1 mark for a second exchange in place of the negative charge mark.  Large surface area ✓     |                                 |    |
|---|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----|
|   | (6)(1)        | The negative charge attracts positive ions/cations, such as exchanged for other cations√                                                                                                                                                 | Ca <sup>2+</sup> ✓ which can be | 3  |
|   | (ii)          | Water will not pass through beds of small clay particles quickly/ will need filtering AW $\checkmark$                                                                                                                                    |                                 | 1  |
|   | (c)           | Clays act as reservoirs for nutrient ions, such as $K^+$ / prevent leaching of ions $\checkmark$ The ions can replace $K^+$ in the soil water as the concentration falls. $\checkmark$ (Equilibria need not be mentioned for the marks). |                                 |    |
|   | (d)           | Layers are hydrogen bonded ✓ together, using OH on octahedral layers ✓, and do not absorb water/ therefore do not crack on drying out/easily break up or crumble ✓.                                                                      |                                 | 3  |
|   |               |                                                                                                                                                                                                                                          | Question total                  | 12 |
| 5 | (a) (i)       | UV light/sunlight ✓                                                                                                                                                                                                                      |                                 | 1  |
|   | (ii)          | It absorbs damaging <u>UV ✓</u> AW                                                                                                                                                                                                       |                                 | 1  |
|   | (b)           | CFCs are unreactive / slowly get up to the stratosphere ✓                                                                                                                                                                                |                                 |    |
|   |               | There CFC + UV light = CF + CI /CI produced from CFC                                                                                                                                                                                     | and UV light ✓                  |    |
|   |               | $CI + O_3 = CIO + O_2$ /or in words                                                                                                                                                                                                      |                                 |    |
|   |               | Ozone concentratioon decreases ✓ ( Accept is destro                                                                                                                                                                                      | yed)                            |    |
|   |               | ( CIO + O = CI + $O_2$ )/ catalytic $\checkmark$ cycle or chain involve Any four marks                                                                                                                                                   | ing CI .                        | 4  |
|   | (c)           | Broken down chemically in troposphere ✓; breaking of C-H                                                                                                                                                                                 | bonds ✓                         | 2  |
|   |               |                                                                                                                                                                                                                                          | Question total                  | 8  |
|   |               |                                                                                                                                                                                                                                          | PAPER TOTAL                     | 45 |