Downloaded from http://www.thepaperbank.co.uk

RECOONISNO ACHEVEMENT

2815/02 Biochemistry

June 2003

Mark Scheme

Downloaded from http://www.thepaperbank.co.uk

The following annotations may be used when marking:
$X \quad=\quad$ incorrect response (errors may also be underlined)
^ = omission mark
bod = benefit of the doubt (where professional judgement has been used)
ecf = error carried forward (in consequential marking)
con $=$ contradiction (in cases where candidates contradict themselves in the same response)
sf $=\quad$ error in the number of significant figures

Abbreviations, annotations and conventions used in the Mark Scheme:

I	$=$ alternative and acceptable answers for the same marking point
$;$	$=$ separates marking points
NOT	$=$ answers not worthy of credit
()	$=$ words which are not essential to gain credit
$\overline{\text { ecf }}$ (underlining)	$=$ key words which must be used
AW	$=$ allow error carried forward in consequential marking
ora	$=$ alternative wording

Downloaded from http://www.thepaperbank.co.uk

1 (a) (i) $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{5}$ in any order \checkmark
(ii) The right hand OH would be below the plane of the ring AW \checkmark Accept C1 or first carbon.
(iii) $\mathrm{OHC}-\mathrm{CHOH}-\mathrm{CHOH}-\mathrm{CHOH}-\mathrm{CH}_{2} \mathrm{OH}$ or vertically or similar

Stereochemistry not needed 1
(iv) Alcohol \checkmark Aldehyde/carbonyl \checkmark Accept formulae for groups.

But the groups must correspond to C 1 and C 4 on their diagram in (iii).
Aldehyde and alcohol score if there is no diagram at all in (iii).
(b) Many \checkmark sites for hydrogen bonding \checkmark.

Many may be implied by two or more in writing or on diagram.
$\mathrm{O}-\mathrm{H} . . . \mathrm{OH}_{2} \checkmark$
Question total

2 (a) (i) Basic sugar- phosphate-sugar-phosphate idea somehow \checkmark
With a clear drawing showing all five carbons on ribose the positions of the two links to phosphate earn \checkmark each.
With a simple pentagon for the ribose the written 3 ', 5^{\prime} (or3,5) scores \checkmark But the simple pentagon alone cannot score position marks.
A tetrahydrofuran ring, lacking the fifth carbon, can score the 3 ' mark but not the 5^{\prime}.
(ii) The sugar is deoxyribose in DNA \checkmark. Accept lacking an O but not deoxygenated.
(b) Look for seven marks from the following nine marking points:

- Triplets of bases \checkmark in RNAs.
- The base pairs in RNA are CG \checkmark and AU \checkmark or names (no marks if using DNA). Names should be understandable and not clearly something else, eg alanine X.
- Complementary/matching triplets on mRNA and tRNA $\sqrt{ }$. Allow reference to codons and anticodons if clear that they are referring to triplets.
- Example of complementary triplets \checkmark. If they have used T rather than U by mistake earlier do ecf here.
- Each tRNA carries its/appropriate/specific amino acid \checkmark
- Idea of start/stop triplets/codons \checkmark
- Base pairs are held together by hydrogen bonding \checkmark.
- Further detail either a diagram $\mathrm{NH}---\mathrm{N}$ or $\mathrm{NH}---\mathrm{O}$ or words to that effect. Or 3 H bonds in CG and 2 in AU. \checkmark

References to DNA and/or details of peptide synthesis do not answer the question. QWC mark for correct use of t-RNA, m-RNA and complementary/matching base pairs (all three).

Downloaded from http://www.thepaperbank.co.uk

3 (a) (i)

Accept ionic/covalent versions of the sodium salt.
(ii) Moles of tristearin $=1000 / 890=1.12(4) \checkmark$

Molar mass of soap $=306 \mathrm{gmol}^{-1} \checkmark$
Mass of soap $=3 \times 1.12(4) \times 306=1032 \mathrm{~g} \checkmark$
Accept answers in range 1028 to 1032g.
If wrong in (i) they can score the moles of tristearin \checkmark and then follow their Mr of soap and their balancing number from their (i) to give a method \checkmark :

Mass of soap $=1.12(4) x$ their balancing number x their $\operatorname{Mr} \operatorname{MAX} 2 / 3$
(b) Non-polar/(long)hydrocarbon chains \checkmark on tristearin.

Dissolve in hexane by Van der Waals attraction (not hydrophobic) \checkmark.
Idea of instantaneous/fluctuating/temporary dipoles \checkmark.
AW
(c) In (biological) washing powder/fluid (accept detergent) \checkmark to remove/dissolve fat/grease (do not accept triglyceride) \checkmark AW
(d) (i) Saturated formula would be $\mathrm{C}_{21} \mathrm{H}_{43} \mathrm{COOH} \checkmark \mathrm{AW}$ but there must be a quantitative approach showing that there are 2 hydrogens too few for saturated.
(ii) Avoids using lubricants from fossil fuels/renewable/thermally stable at high temperature/biodegradable or similar sensible remark \checkmark

Downloaded from http://www.thepaperbank.co.uk

4.(a)

First \checkmark for a correct glycosidic link, with the two hydrogens unless they are using a skeletal formula.
Second \checkmark for correct 1,4 position and orientation.
Skeletal and incomplete structures are acceptable as long as they have all twelve carbons and the oxygens in the rings and do not include a structural error other than incompleteness.
(b) (i) Increasing proportion of molecules \checkmark have the activation energy \checkmark AW If no reference to Ea find 1 mark only for increasing number of collisions \checkmark.AW
(ii) Bonds/weak attractions (any one type may be specified) in the protein are broken \checkmark changing active site or tertiary structure/ enzyme denatured \checkmark AW
(c) (i) $\mathrm{H}_{2} \mathrm{NCH}\left(\mathrm{CH}_{3}\right) \mathrm{COOH}$ or fully displayed or zwitterion
(ii) Any one $\mathrm{C}=\mathrm{O}$ and any one $\mathrm{NH} \quad(\mathrm{C}=\mathrm{O} \ldots \mathrm{H}-\mathrm{N}) \checkmark$ Accept two separate CONH. Accept any O and H in the backbone. The answer must be on the printed diagram.
(iii) C Hydrogen bonding \checkmark
$-\mathrm{CH}_{2} \mathrm{OH} .$. to any suitable group \checkmark
D Covalent / disulphide bridge \checkmark (Do not accept disulphur or sulphide) -S-S- \checkmark (the S-S bond must be clearly a single covalent bond)

In each case there must be labelling/annotation or a few words to explain.

